
Programming Plone - The MySite Tutorial
A file-system based product development tutorial for Plone.

Raphael Ritz

(c) ITB, Humboldt-University Berlin, 2004, 2005 (preview release as of May 2, 2005)

Programming Plone - The MySite Tutorial

2

Objective 7

Audience 7

Topics Covered 7

Dependencies 7

Installation 7

Building Blocks 9

Python 9

Zope 9

CMF 10

Plone 11

Archetypes 11

The Big Picture 12

Object/Name/Method Look up (or how Zope finds out about things) 12

Multiple Inheritance 12

Acquisition 13

Skinning 13

Getting Ready for the MySite Product 15

What are all these Different Files for? 15

The Gory Details 16

config.py 16

__init__.py 16

Extensions/Install.py 17

MyTool.py 19

MembershipTool.py 20

Deadline.py 21

Event.py 23

CompoundWorkflow.py 24

my_utils.py 24

refresh.txt 25

tool.gif 25

version.txt 26

skins 26

Customizing Archetypes 28

Archetype's Approach 28

Playground 29

Basic Customizations 29

Programming Plone - The MySite Tutorial

3

BaseSchema (part 1) 30

Macros 30

Widgets 31

Fields 32

Views 32

Validators 34

Refactoring 35

Splitting Products 35

Schema Evolution 37

Adding a field 37

Deleting a field 37

Renaming a field 38

Changing the Type of a Field 38

Customizing BaseSchema (part 2) 38

Conclusions 40

Internationalisation (i18n) 41

Definitions 41

Plone and Internationalisation 41

Plone is Internationalised 41

Using the I18N infrastructure 42

gettext 42

PlacelessTranslationService (PTS) 42

Translating Page Templates 42

Case One: Welcome to Plone 43

Case Two: "Plone Icon" 44

Case Three: "There have been over 100,000 downloads of Plone." 44

Case Four: "Please visit About Plone for more information." 44

Translating MySite 45

Preparing the templates 45

portlet_deadlines 45

search_form 46

Preparing the translation directory 46

Translating code in Python files 46

Updating the i18n directory 48

Right: 48

Are we done yet? 49

Translating text in Python code 49

Programming Plone - The MySite Tutorial

4

Translating vocabularies 49

This is one way to do it: 49

Localising content 50

Solutions and Examples 51

Testing 53

Why testing? 53

Digression: Test-Driven Development (TDD) 53

Quoting Kent Beck innerlink 1 : The "rhythm" of TDD can be summed up as follows: 53

The surprises are likely to include: 53

Testing what? 53

Unit tests 54

Integration tests 54

Regression tests 54

Functional tests 54

How to do it in general 54

XUnit 55

Implementations 55

DocTesting 55

Running Zope's unit tests 55

Use Zope 2.7.3 or later 55

Testing Zope 56

ZopeTestCase 56

Providing unit tests for your product 56

Writing functional tests 56

Writing doc tests 57

References 57

Some Python specific links: 57

Debugging Plone 58

Printing to the browser 58

Printing to the console 58

Logging 58

Using zopectl debug 59

Using Python's debugger (pdb) with emacs 64

Using ZEO 65

Conclusions 66

Solution Proposals for the Exercises 67

1] Fundamental Background - Object Orientation 67

Programming Plone - The MySite Tutorial

5

2] Python Background - Collection Types 67

3] Fundamental Background - Name Space 68

4] Zope Background - PropertyManager 68

5] Python Background - Monkey Patching 69

6] Zope Background - ZCatalog 70

7] CMF Background - Content Generation 70

8] Fundamental Background - Inheritance 72

9] Plone Background - createMemberArea 72

10] Archetypes Background - Basic Concepts 72

11] CMF Background - Type Registration 72

12] Archetypes Background - References 72

13] CMF Background - Workflow 72

14] Python Background - Signature 73

15] Python Background - Submodules 74

16] Optimization - Search Template 74

17] List Comprehension 75

Major Python/Zope/CMF/Plone/Archetypes resources 76

Documentation 76

Python 76

Zope 76

CMF 76

Plone 76

Archetypes 77

More Specific Tools for Finding or Generating Documentation 77

Full-text Searchable Mailing List Archives 77

Documentation Generating Tools 77

DocFinder 77

HappyDoc 77

epydoc 77

Zpydoc 78

Other Development-Supporting Tools 78

VerboseSecurity 78

TCPWatch 78

BoaConstructor 78

ZopeProfiler 78

Installing Zope, Plone and Products 79

Source Installations in General 79

Programming Plone - The MySite Tutorial

6

Zope and Plone 79

Zope 79

Plone 79

Products 79

Products for Zope 79

Products for Plone 80

Troubleshooting 80

Zeo 80

My Development Setup 81

Acknowledgement 82

About this Document 83

BackTalk 83

Programming Plone - The MySite Tutorial

7

Objective

Provide an introduction to product development for Plone.

Audience

Plone site managers that feel the need to turn into file-system based product development but have no clue where to
start. It is assumed, however, that you know what the Zope Management Interface (ZMI) is and how to access it as well
as how to install products for Zope/Plone in general. Some basic Python knowledge is definitively a plus but the tutorial
should be helpful even without that.

Topics Covered

The tutorial demonstrates how to provide our own product with:

 • your custom portal tool (MyTool - a collection of custom methods)

 • customized plone tool (MembershipTool - overwrites addUser to also notify admin per email on join; adds
getMemberName(id) to get a member's fullname)

 • custom Archetypes-based content type (Deadline - to be addable to Events)

 • customized Archetypes-based plone content type (Event - can have Deadlines as sub-objects)

 • custom workflow (CompoundWorkflow - to change states of events including their deadlines)

 • custom skin including:

 • custom portlet to display the next upcoming deadlines

 • custom search template plus scripts to restrict the portal types offered on the form

 • default content added to the site on product install (an event topic with subtopics)

 • inclusion of other 3rd-party products (FlexibleTopic - unreleased from one of my sites and ATExtensions)

 • Internationalisation (i18n) support

Dependencies

Written for use with Plone 2.

Needs Archetypes (now included with Plone)

Installation

Programming Plone - The MySite Tutorial

8

DON'T USE THIS PRODUCT ON A PRODUCTION SITE UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU
ARE DOING. THIS IS EDUCATIONAL SOFTWARE WRITTEN TO HELP YOU EXPLORE PLONE. IT WILL
IRREVERSIBLY CHANGE SOME OF YOUR SITE'S SETTINGS.

To install the product, copy, move, or link the three subfolders MySite , FlexibleTopic , and ATExtensions to
your Zope's product folder and restart the server. Then use the quick installer to add MySite to a test-and-throw-away
Plone instance. The product takes care to install all other ones it depends on (like Archetypes) if necessary and it also
puts an events topic in your site as you will notice.

You can get the accompayning product from http://www.neuroinf.de/LabTools/MySite. The location of your Products
folder depends on your local installation. In general, it is considered best practice to use the Products subfolder
within INSTANCE_HOME but there is also one in the SOFTWARE_HOME directory. If you don't know where these folders
are on your server, use the ZMI and go to the Control_Panel in the Zope root. There, you will find these and other
settings specific to your local server. When you've installed Plone on Windows using the installer, the Products folder
is: <Plone 2 folder>/Data/Products .

Enjoy,

Raphael Ritz (r.ritz(at)biologie.hu-berlin.de)

Programming Plone - The MySite Tutorial

9

Building Blocks

Plone and Archetypes are an application of the Content Management Framework (CMF) for the web-application
server Zope which is implemented in Python. In order to program Plone you need to have at least a basic
understanding of these parts, what they provide and how they interact. So, lets consider them in turn:

Python

Python is a powerful interpreted scripting language yet it is easy to learn. Quoting Tim Berners-Lee: I was happy to find
that Python is a language you can get into on one battery! I have been happily hacking ever since. (from
http://www.w3.org/2000/10/swap/). You should make yourself at least familiar with Python's elementary data types and
how to handle them (look in particular for the string, list, tuple, and dictionary types and their methods). Furthermore,
you want to understand how Python supports object-oriented programming and how you define and use functions,
classes and methods.

Maybe the most important single feature that Python provides for Plone is platform independence as Python runs on
any major computing platform available today. There is a little twist to this statement as some parts of Zope and
Zope-based, third-party products are written in C or are using C libraries which are not necessarily available for all
platforms but Plone would not be available for most platforms if Python would not support this.

Zope

Zope is a flexible, multi-purpose, web-application server written in Python. Zope does a lot of things. From a more
general perspective, the most important ones for us are:

 • It establishes a web-interface to the power of Python.

 • It comes with a hierarchical object database, the ZODB, and acquisition which uses the object hierarchy to
extend qualified name spaces.

 • It implements a powerful security mechanism based on roles and permissions.

 • It provides template languages: DTML, ZPT (including TAL, TALES, and METAL)

 • It comes with a variety of built-in object types ready to use.

 • It provides a through-the-web management interface: the ZMI which you may think of being a browser and
management tool for the ZODB. You in fact need a web browser to access it (almost any browser will do).

But nothing is perfect and so there are also some features missing that you would ideally expect such a tool to provide
(and that will be provided by the next generation of Zope, namely Zope 3), e.g., an event or notification service and
unique, persistent object identifiers. Especially the lack of the latter is hard to believe and you may say each object can
be specified uniquely by its path in the ZODB and therefore its URL. This is true but objects can be renamed or moved
and this changes their identifier, so there is no notion of a persistent identifier (URI). This is why it is not easy to have
referable objects and robust relationship management within plain Zope.

When programming Plone, it is important to learn when to use Plone or CMF specific API versus Zope API. Maybe the
most important aspect you want to look into is Zope's security mechanism and how to use it for your own developments
(including proxy roles, local roles and executable ownership). For reference, read the respective chapters in the Zope
book http://zope.org/Documentation/Books/ZopeBook/2_6Edition/Security.stx and the developer's guide

Programming Plone - The MySite Tutorial

10

http://zope.org/Documentation/Books/ZDG/current/Security.stx.

While Zope is a great framework to use in general, it is not geared toward any specific kind of web-application, meaning
that for complex applications like interactive community portals or document management systems, you still have to do
a lot of programming yourself. But since content management in general is such a typical application there is an add-on
Zope product available that is tailored to the needs of developers who need to provide such systems: the CMF.

CMF

Zope's content management framework, the CMF, adds infrastructure to Zope in order to support the development of
content-management centric web-applications like community portals or intra-nets.

Following a component architecture, the extensions are split into a variety of different modules and classes, each being
responsible for an individual task. Furthermore, the CMF distinguishes between functional components (the tools or
services) and components for holding data to be displayed (the content types). The generic parts are grouped within
one product called CMFCore . The more specific parts illustrating how to modify, extend and use the core components
are found in CMFDefault. CMFCalendar and CMFTopic further illustrate how to extend the CMF using third-party
products (actually, CMFCalendar was the first third-party contribution to the CMF; CMFTopic is another later
extension).

Since the CMF is at the core of almost everything in Plone, we will briefly consider some of its main concepts now. You
don't need to understand every detail mentioned in the following paragraphs when reading this for the first time but you
should get an idea of the CMF way of doing things. Later on, you might want to return to this section and follow the
links provided:

 • Member handling is managed by the membership tool (portal_membership), except for registration which
is delegated to the registration tool (portal_registration) and member data configuration and storage
which is the responsibility of the member data tool (portal_memberdata). It is a rewarding exercise to
browse through their source code to see how these tools interact:

When the join_form is submitted, the register (skin) script calls addMember from the registration tool. This
method does some checking before it calls addMember from the membership tool and finally it calls the tool's
afterAdd method - one of the methods for us to hook into the registration process. Then it returns the newly created
member object.

The addMember method from the membership tool, in its turn, first creates a Zope user object in the acl_users
folder before calling getMemberById , which in turn calls wrapUser from the membership tool. wrapUser from the
membership tool does some checks and role mappings before calling wrapUser from the memberdata tool. The
memberdata tool is used for wrapping in order to enable member data storage independent of the user source (think of
authenticating against an external LDAP folder). The individual data of the members are stored within the tool's
_members BTree. Next, wrapUser from the membership tool calls createMemberarea (if the TTW configurable
flag is set). Note the clear distinction between the (Zope) user and the portal member object. Finally, addMember sets
the member properties.

Further note that portal members are not considered content by the CMF and that they are therefore neither subject to
workflow nor are member data fields as easily configurable as content types are when using archetypes. There is,
however, a third-party product CMFMember from the collective that replaces the default memberdata tool to make
membership subject to workflow and to enable memberdata configuration including the preferences form using the
archetypes machinery.

 • Content handling is managed using a number of tools. First and foremost there is the types tool (
portal_types) which serves as a registry as well as a factory for the portal types (as called by

Programming Plone - The MySite Tutorial

11

invokeFactory from PortalFolder). In addition, the types tool allows you to define new portal types using
scriptable types or copy/past/rename plus property editing from existing types.

Other tools that enhance the portal types are the discussion tool (portal_discussion) which enables the users
to add comments to content objects that way becoming the starting point of threaded discussions and therefore to
behave folderish even without being necessarily object managers (it provides them with an opaque item called
talkback which is a DiscussionItemContainer).

The metadata tool (portal_metadata) implements your metadata policy. Per default this is almost the full Dublin
Core metadata standard element set (http://dublincore.org/) with the prominent exception of Relations (guess why).

The catalog tool (portal_catalog - a preconfigured ZCatalog) handles the indexing of content objects (by
sub-classing CMFCatalogAware PortalContent "learns" how to (re)index itself). The most important method that
the catalog tool provides is searchResults but, of course, it supports the full ZCatalog API .

The workflow tool (portal_workflow) extends Zope's security mechanism for portal content to become state
dependent. This means that in addition to Zope's general security handling you can assign states to objects (like
private, pending, or published) and make selected permissions dependent on the current state. This is a very powerful
concept that you should make yourself familiar with (e.g. by reading
http://www.zope.org/Members/hathawsh/DCWorkflow_docs). From a developer's perspective you should know that the
workflow tool provides getInfoFor to get at workflow variables like the review_state and doActionFor to
invoke workflow transitions.

There are some more tools in the CMF and, of course, the content types themselves but you should become able to
figure out for yourself how to use them as we proceed. We now move on and turn to Plone itself.

Plone

Plone is an application of the CMF; i.e. it realizes an out-of-the-box portal application using Zope and its CMF. As
Plone cares about user experience (user interface design, usability, accessibility, internationalization (i18n) support,
multiple browser support, standards compliance, etc.) much of what actually constitutes Plone lives in skin folders
because this is where most of the user interface is defined. Some people therefore even say Plone is just a skin for the
CMF but I consider this a bit unfair given that this is a central and important contribution, which includes a great deal of
additional machinery to enhance the user's and administrator's experience (like the form controller, the quick installer,
the migration tool, and the error reporting tool to mention some examples).

That said, it should not be too surprising to learn that when programming Plone you are more confronted with Python,
Zope, and the CMF than with Plone proper. Since Plone is the target of the following tutorial anyway and because
Plone's major focus - templating - is not covered here we close this section with a brief note on archetypes.

Archetypes

Archetypes is another application of Zope and the CMF that adds two main features: easy content type generation
based on schemata, and referencability. Easy content type generation is supported by highly flexible views and editing
forms, including form processing scripts so that you can concentrate on data modeling while developing your
application without having to worry about the necessary skin methods.

Finally, archetypes-based content types are equipped with a unique, persistent identifier (the UID) which allows for a
reference engine to establish and maintain robust relationships between those objects.

In theory, Archetypes should be independent of Plone, meaning that you can use it in any CMF based site but I am not
sure whether this is indeed always the case.

Programming Plone - The MySite Tutorial

12

The Big Picture

If you aren't a programmer already but you got to know Plone from the browser perspective so far only then you should
first understand that everything that you have done through the web up to now to customize your site can also be
scripted or integrated into custom file-system based products. If this comes as a surprise to you then you should realize
how web applications in general and web interfaces in particular work. Whenever you follow a link or press a button an
HTTP request to the site's server is issued. In the case of Zope this request is analyzed by the ZPublisher to figure out
which method to call on which object and which parameters to pass to the call. As Zope is (almost) entirely written in
Python, those objects are usually instances of Python classes which provide the method to be invoked based on the
way in which Python/Zope/CMF/Plone looks up things (see below for more on how this is done).

So every action that you can trigger through the web can also be invoked from your Python program as soon as you
know how to access Zope's objects and how to call methods on them. This is basically what programming Zope is
about. In general, this is quite easy due to the fact that Python's support for object-oriented programming is very
straight-forward and intuitive. The hardest part (from my experience at least) is to figure out how to get at any particular
object to begin with and, most importantly, how to figure out what you can call on which object (its Application
Programmer interface; the API).

To illustrate this a bit further, consider the following situation: When you write or edit a page template you often include
a statement like:

<tal:define="my_value python:here.some_object.some_method(argument)">

Anonymous User - Mar. 13, 2005 6:42 am:
 Not a python programming but I get the impression 'here' is a type of 'this' pointer?
Anonymous User - Apr. 13, 2005 10:19 am:
 'here' is equivalent to 'context' and is specific to python in Zope

What else could you use instead of here at the beginning of such an expression? What can some_object or
some_method possibly be? Whereas the first question is quite straight-forward to answer (all variables defined globally
plus any local variable from the current context; i.e., defined on an element containing the current element), the second
question is harder to deal with. The short - but almost useless - answer is: "This depends on what here is referring to."
While this is true, it typically doesn't help you that much as long as you don't know how Python/Zope/CMF/Plone finds
things (the following section is quoted from my Beginners Guide at
http://www.neuroinf.de/Miscellaneous/BeginnersGuide).

Object/Name/Method Look up (or how Zope finds out about things)

Apparently this is one of the most confusing issues beginners stumble accross as it involves a variety of advanced
concepts.

Multiple Inheritance

As Zope is written in Python, Zope objects are instances of Python classes. Python supports multiple inheritance and
Zope makes heavy use of this. This means, when you define a class as in:

class MyClass(BaseClass1,BaseClass2, ...)

you can derive it from as many other classes as you like, where each in turn can be derived from an arbitrary number of
other classes, and so on. This can make it hard to figure out which methods are available to a particular class because
you need to scan all base classes (and their base classes, etc.) to find out. This is what DocFinder does for you. With
DocFinderTab you can even make DocFinder readily available within your ZMI. Note that the order in which the base
classes are specified is important! Lookup proceeds from left to right. So in case of a conflict (e.g. two different base

Programming Plone - The MySite Tutorial

13

classes provide a method with the same name but implement it differently) Python just takes the first it finds.

Example Say you want to define your own folderish content type for the CMF. You do this by deriving from
PortalContent and PortalFolder . But depending on whether you use:

class myFolderishType(PortalContent,PortalFolder)

or

class myFolderishType(PortalFolder,PortalContent)

Anonymous User - Nov. 7, 2004 5:28 pm:
 Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes
 looks as follows:
 class DerivedClassName(Base1, Base2, Base3):
 <statement-1>
 .
 .
 .
 <statement-N>�
 The only rule necessary to explain the semantics is the resolution rule used for class attribute references.
 This is depth-first, left-to-right. Thus, if an attribute is not found in DerivedClassName, it is searched in
 Base1, then (recursively) in the base classes of Base1, and only if it is not found there, it is searched in
 Base2, and so on.

you will end up having different behaviour, e.g., with respect to the portal_catalog because PortalFolder
overwrites indexObject() and reindexObject() to do nothing. So in the first case above your content type will
be covered by the catalog whereas in the second it won't be.

Acquisition

In the ZODB an object can only be created in a container which in turn has to "live" in another container (only root
doesn't need a container) and so on. This imposes a hierarchical relationship among the objects and it is this structure
that Acquisition makes use of. If a method is called on an object that the object itself does not provide (neither by itself
nor through inheritance) then Zope starts looking for the method in the object's container. If it cannot be found there
either, it looks into the container's container and so on. To make sensible use of this you need to carefully consider
where to place which objects since this makes a difference depending on the container's properties. This concept for
look up is called acquisition by containment .

To make acquisition even more powerful there is a further twist to the concept called acquisition by context : When
you invoke a method on an object you can do so by specifing the object's path from the root and then appending the
method. For example, look at: /topfolder/somefolderA/subfolder/object/mymethod (note the URL format
of method invocation here; i.e., you can do this directly via a web browser or in TALES using a path expression). Now
suppose none of the folders here nor the object provides the method mymethod but that somefolderA has a sibling
somefolderB in the topfolder which provides mymethod . You can now extend your call to
/topfolder/somefolderB/somefolderA/subfolder/object/mymethod and the method will be found.
Through extending the path you have changed the context in which the method is called and acquisition makes use of
this for the lookup.

Note: This works not only for method but also for object look up. Example :

<tal:define="results python:here.portal_catalog(<search parameters>)">

works from anywhere within a Plone site (no matter what here currently refers to) because the portal catalog is always
found by acquisition in the portal's root folder. Furthermore, it is directly callable with searchResults being the
default method so here.portal_catalog.searchResults(<search parameters>) and
here.portal_catalog(<search parameters>) are equivalent.

Skinning

Programming Plone - The MySite Tutorial

14

This is a concept to extend name/method look up that the CMF adds to Zope. I like to think of this as having multiple
different search paths to choose from. Suppose you have a number of folders (or layers as they are called in the
context of skinning) f1, f2, ..., fn holding different versions of the same set of methods (but there is no need to
have each method in each folder). Now you define a skin by saying: for skin A first look in f1 , then look in f2 , then
in f3 whereas skin B might be defined as: first look in f2 , then in f3 , then in f1 and so on. That way you can
provide, e.g., different designs to choose from (for example by having different style sheets in the different folders).

But the concept is more powerful than to just provide different designs. In principle you can use it to provide multiple
object behaviour , meaning that you can make objects behave differently in response to particular method calls if the
method is implemented to do different things in the different skin folders.

Under the hood, the skins tool works by extending the acquisition context of all objects within a CMF site. But you
cannot tell this from looking at the URL in your browser, because this is done "silently" when traversing a so-called
SkinnableObjectManager , a class that the PloneSite class itself inherits from.

Another nice feature provided through this concept is that you can easily customize methods without interfering with the
original source code (this is a huge maintenance plus). The CMF does this by making the default skin folders available
as file system directory views to the ZODB and therefore to Zope's through-the-web (TTW) management
interface (ZMI). If you now navigate to one of those folders and you select a method you can just click customize
and Zope will place a copy of the method in your custom skin folder which you can edit now as you like. Since the
custom skin folder is typically placed before the default skin folders in the look up pathes of the skins, your method will
be found first whenever called. Note that you did not change the original method in any way. It is still there and as soon
as you delete (or rename) your customized copy, it will be in place again (very useful if you screw things up).

This closes the general introductory part and we are now ready to dive into the details.

Programming Plone - The MySite Tutorial

15

Getting Ready for the MySite Product

In order to be able to appreciate the changes that MySite does to a regular Plone instance, make yourself familiar
with Plone's event and topic content types at least. For better comparison, it is recommended that you create two new
Plone instances in your Zope root, one for reference and the other one where you install MySite.

This tutorial does not try to teach you programming from scratch. Instead, it contains a number of pointers,
explanations, and exercises that provide a hands-on start with file-system based development for Zope, CMF, that way
illustrating the Plone development process. So here is your first exercise:

Exercise (Fundamental background - Object orientation): Explain the different concepts of an object, a class, an
instance, a constructor , an attribute, and a method. What are properties, accessors, and mutators? What are
Python's setattr, getattr, hasattr used for? (Solution)

If you have no clue how to answer the questions above, you would definitively benefit from reading some background
literature on object-oriented programming. But even in this case, you should just continue reading.

Now, we jump right into the middle of MySite. Go into Zope's Products folder and look what's in the MySite
subfolder.

What are all these Different Files for?

File-system based products are composed of a number of files. Not all of the files in the MySite product directory are
mandatory for all Plone products, however, the files do follow common Plone product naming and organisational
conventions. Technically, only the __init__.py module and the install function from
Extensions/Install.py are required to create a Plone product, but MySite is attempting to demonstrate
best-practices for developers.

The files included in the MySite package:

 • CompoundWorkflow.py defines a custom workflow,

 • config.py declares some custom variables in one place in order to have other parts as generic as possible,

 • Deadline.py and Event.py define custom, Archetype-based content types,

 • Extensions contains the Install.py module with the install function (the latter is checked for and
executed by the quick installer),

 • __init__.py executes at Zope startup to initialise our classes to make them available to Zope (but not yet to an
individual Plone instance; that's what the install is for),

 • MembershipTool.py and MyTool.py define custom portal tools,

 • my_utils.py provides local utility functions,

 • refresh.txt allows for product refresh via the Zope Management Interface or auto-refresh (broken with the
Archetypes 1.2 series but fixed for 1.3)

 • skins provides the skin folders,

Programming Plone - The MySite Tutorial

16

 • tool.gif holds the icon for the custom tools, and

 • version.txt differentiates between product versions.

The Gory Details

In this section you find comments on each of the files listed above in order to explain what they are for and how they do
what they are supposed to do. We start with the config file.

 config.py

The configuration file provides a central location for defining custom settings and variables which are to be used
throughout the product. Centralizing these definitions is done primarily to make maintaining the definitions easier. Since
each module in the product simply references the centralized definition, a single change will take effect throughout the
product without tedious and error-prone manual editing of source files. Among the commonly defined values in a
configuration file are the permissions (normally strings) defined and used by the product. As these permission strings
must precisely match to be effective, the centralized configuration file prevents subtle errors from emerging with slightly
misspelled permission strings. It is a common Python convention to use ALL-CAPS names for constant values, such as
permission strings. In the context of a Plone product, seeing an ALL-CAPS identifier probably indicates that the value
has been defined in config.py . In addition to constant values, the configuration file may include references to external
resources (such as Python modules) from changes in which the author of the product would like to insulate the product.
Providing "wrapper" code within config.py allows the developer to access the functionality throughout the product
without directly accessing the external resource.

Exercise (Python background - collection types): Some of the variables in config.py are assigned a list-type
value. Lists are one example of a collection , or more specific, of a sequence . What is the difference between a
sequence type and a mapping type? What is slicing ? What are the differences between a list and a tuple ? (
Solution)

The first piece of code that gets executed from our product on Zope's start up is __init__.py , so let's consider this
one next.

 __init__.py

Like most Python modules (pieces of code to be combined to form larger applications; in fact, our Plone product here is
actually a Python package named Products.MySite) __init__.py starts with import statements to make
other modules or functions or classes available here even though they are defined in other modules. The imports from
CMFCore and Archetypes provide functions to be called for registering and initializing our various custom
components (the tools, content types, and skins) with Zope. To have access to our custom components, they also need
to be imported as well as our custom settings from the config file.

The individual imports are:

from Products.CMFCore import utils — This makes the utilities module from CMFCore available. We will
later use its ContentInit and ToolInit classes.

from Products.CMFCore.DirectoryView import registerDirectory — A DirectoryView is used to make
the contents of a file-system based folder available as if the content were placed in the ZODB. We will call its
registerDirectory method to add our custom skin folder.

Programming Plone - The MySite Tutorial

17

from Products.Archetypes.public import process_types, listTypes — These are convenience
functions defined in the ArchetypesTool and explained below.

It should be obvious now that registerDirectory(SKINS_DIR, GLOBALS) makes our product's skins directory
available to Zope (in order to make it accessible to install_subskin in the install method of the
Extensions/Install module to make the folders in skins available as filesystem directory views) and that the
following calls from initialize to ContentInit and ToolInit from CMFCore's utils are there to register our
content types and tools respectively (this is what makes them available to the drop down Add menu in ZMI).

Content type initialization for CMF is quite complex, so there are some convenience methods provided by Archetypes
to make it easier for us to put together all the information that needs to be passed to ContentInit . For
Archetypes-based content types you have to do it this way because the constructors and the factory type information
(fti) objects are not provided by us when we define the classes -- they are generated by the Archetypes machinery
when calling process_types . That's what the:

content_types, constructors, ftis = process_types(
 listTypes(PROJECTNAME),PROJECTNAME)

call does. Note, that this only registers the content classes with our Zope instance, but not with any of our Plone
instances. The way in which this is done is addressed in the next section.

Exercise (Fundamental background - name space): Explain the concept of a name space . What is the difference
between the statement from config import SKINS_DIR, GLOBALS, PROJECTNAME and from config
import * ? Would the latter also work here? (Solution)

 Extensions/Install.py

To make our custom components available within a particular Plone instance, they have to be installed there as well.
This is not done on Zope's start-up because you need to have a way to control which product's components should be
made available to each CMF/Plone instance, as you can have more than one Plone instance in any given Zope
instance.

To this end install from Extensions/Install.py has to be executed (note that Install.py is actually the
biggest single file in this product, reflecting the fact that quite a number of things happen here).

When the Plone quick installer is asked to install a product in a Plone site, the installer looks for a callable object
named install in the Extensions/Install.py module and applies it to the site root, so self refers to our
Plone site here. The purpose of the install function is to install into the Plone instance all of the structures required to
support the product's operation. For very simple products, the amount of work required is quite minimal, normally
consisting of a call to installTypes and another to install_subskin .

For a more complex product such as MySite , the amount of configuration required to integrate the product into Plone
is such that it is useful to split the process into multiple functions each of which is called from the install function. Each
of the functions in the Install.py module have self-explanatory names , so it should be easy to figure out their
purpose. The install function here is defined at the end of the module, and calls each of these defined functions in turn.

Each of these broken-out functions demonstrates how to accomplish an operation which, until now, you may have only
known as a through-the-web operation. These functions demonstrate how to accomplish these tasks using
Zope/CMF/Plone's API (Application Programming Interface).

Unfortunately, when you just start to program for Plone one of the hardest parts is to learn how to figure out this API
(i.e., how to do what) but there are a number of tools that can help you here (e.g., DocFinder, Zpydoc) and reading
source code of other products and modules (and there in particular the installs and tests) is always a good source of
inspiration.

Programming Plone - The MySite Tutorial

18

Exercise (Zope background - PropertyManager): Make yourself familiar with Zope's property manager (e.g., by
reading its section in the Zope book's appendix on the API and its source code in OFS/PropertyManager). Where
does setupProperties from the Install module use public API calls and where private? (Solution)

Exercise (Python Background - Monkey Patching): Read
http://www.zope.org/Members/Caseman/Dynamic_HotFix_News/Dynamic_Hotfix to make yourself familiar with the
concept of Monkey Patching. Provide a patch for the PortalContent class in
Products.CMFCore.PortalContent.py to include the properties tab in ZMI for any portal content. Use this
now to enable configurable suppression of the document_byline displayed for individual documents (e.g., for the
portal's frontpage to avoid the wrong impression that nothing on your site changed since the last edit of the site's
index_html document). (Solution)

For most functions provided by Install.py it should be straight-forward to figure out how they do their job. The
trickiest part is maybe the installation of the custom membership tool (in setupTools), so let's consider this one a
representative example:

 • actions_buffer = None declares a variable and initializes it to the Python object None

 • if hasattr(self, "portal_membership"): the Python way to check whether the current site (self)
has an attribute called portal_membership . If so, then

 • actions_buffer = self.portal_membership._actions stores the current action settings in the variable
declared previously

 • self.manage_delObjects(["portal_membership"]) removes the current tool (Plone's membership tool)

 • out.write(...) adds a statement to the install log

 • addTool = self.manage_addProduct["MySite"].manage_addTool makes the referenced function
available via the name addTool in order to get the next statement on one not too long line. The
manage_addProduct["MySite"] demonstrates how to access any specific product from within application
code. manage_addTool was made available when we initialized the product's tools via the call to
utils.ToolInit(...) in the __init__.py module.

 • addTool("Membership tool", None) now installs our custom membership tool

 • if actions_buffer: checks whether we had saved any actions before and if so

 • self.portal_membership._actions = actions_buffer restores them (otherwise we have CMFDefault
action settings)

 • 'if hasattr(self, my_tool):' (and the following lines) checks to see if we have already created a my_tool
instance, and if so deletes the current instance. We then create the new my_tool instance in the same way as
for the portal_membership tool before.

Note : Deleting and recreating the tool wouldn't be strictly necessary here as long as we can be sure that no other
product provided a tool with the same name. But if so, ours wins (but we lose the other tool). If it would be more
important to keep potential customizations to the tool, it would be better not to recreate it (changing Install.py
respectively is left as an easy exercise).

Programming Plone - The MySite Tutorial

19

The special treatment of the actions for the membership tool is necessary because Plone (for ease of migration)
doesn't define the actions in its membership tool itself but rather changes the action settings from CMFDefault's
membership tool on Plone's install. Without the action handling here we would lose those changes and fall back to
CMFDefault's action setting.

Exercise (Zope background - ZCatalog): Make yourself familiar with Zope's catalog tool, the ZCatalog (see, e.g.,
the chapter on searching in the Zope book and the section on the ZCatalog in the API appendix). Explain the following
concepts: catalog index , catalog metadata , catalog brain . Change addCatalogFields to also add a keyword
index. (Solution)

One remark on setupInitialContent : Note, how content generation is typically a two step process. First, you
instantiate the new content object (by calling invokeFactory), then you get a handle on it (et =
getattr(root, "events")), and only then call edit on it to set its field values (plus some further manipulations
like adding criteria to the topic).

Exercise (CMF background - content generation): Where is invokeFactory defined? What happens in the
process triggered by calling invokeFactory ? Work your way through the source code to figure that out. What is
Plone's factory (portal_factory) for? (Solution)

Now that we've made it through the config , __init__ and install we can turn to those parts that are the real
cause of all of these efforts: our custom tools and content types. We start with the easiest one, our custom tool
declaration in MyTool.py .

 MyTool.py

The first statement after the imports is also the most important one here:

class MyTool(UniqueObject, Folder, ActionProviderBase): This defines our class MyTool to be a
subclass of UniqueObject , Folder , and ActionProviderBase . This demonstrates one of Python's key
features called multiple inheritance . It is used here to equip our custom tool with all of the attributes and methods
that are provided by those classes (and their base classes respectively).

 • UniqueObject -- provide services for objects which should not be overwritten or shadowed, i.e. you cannot
have another object with the same id in the entire CMF site (api-doc).

 • Folder -- uses the common Zope folder as the base data type, with all of the features that we expect from a
Zope folder, such as containment and creation of sub-objects (api-doc).

 • ActionProviderBase -- isn't actually necessary for the current example because we don't define any actions
here but it is included so that MyTool.py can serve as a template for you to provide your own custom tool which
you may want to add actions to (this could also be done in the install if needed - api-doc).

Beyond the attributes and methods that it inherits from its superclasses, the only thing that MyTool provides is the
transform method, which uses the urlify and at methods. There is nothing fancy here, and in principle you could
have added those methods as through-the-web (TTW) Python scripts if we weren't using Python's regular expression
module (re) in urlify which you are not allowed to use in TTW code. Providing such scripts as External Methods
would be another option but when you must provide more than a handful of external methods it is usually more
convenient to collect them in a custom tool.

The last statement (InitializeClass(MyTool)) does just what it says: it initializes the class for use with Zope,
most critically by initializing the class' security settings. The security settings demonstrated here simply declare the
entire tool (i.e., access to the tool itself as opposed to its individual methods - so-called Object Security Assertions as

Programming Plone - The MySite Tutorial

20

opposed to Method Security Assertions as demonstrated by the next tool) to be protected by the View permission.
That's what the two statements security = ClassSecurityInfo() and
security.declareObjectProtected(View) are for. Read the chapter on security in the Zope Developer Guide
for a more indepth coverage of security assertions (http://zope.org/Documentation/Books/ZDG/current/Security.stx).

The manage_options define the tabs that you see when you browse to the object via ZMI. Here they are changed
from the Zope Folder ones by excluding the view tab (Folder.manage_options[1]) and optionally replacing it
with the actions tab (if you uncomment the + ActionProviderBase.manage_options . The _properties =
Folder._properties + ... adds the at_mask to the TTW editable properties of our tool so that its value can be
changed via ZMI.

Exercise (Fundamental background - Inheritance): Explain the concept of inheritance . What does multiple
inheritance mean? What are conflicts in this context? How does Python deal with these conflicts? (Solution)

Next, we will consider our custom membership tool.

 MembershipTool.py

The main difference between this and the previously discussed tool (MyTool) is that instead of providing an
additional tool to Plone, we replace one of the existing tools with a subclass of that tool. This allows us to customize the
behavior of the tool even for those objects which are not aware of our customization.

To this end, we import Plone's membership tool but we rename it to BaseTool on import (from
Products.CMFPlone.MembershipTool import MembershipTool as BaseTool) to be able to call our own
tool-defining class MembershipTool without creating a naming conflict. The statement class
MembershipTool(BaseTool) defines our tool as a subclass of the original Plone tool, thereby inheriting all its
functionality.

The method definitions that follow specify how our custom membership tool will differ from the original one. There are
two ways we can change our subclassed tool: (i) by providing additional methods (as demonstrated by notifyAdmin
and getMemberName , two methods that Plone's membership tool does not provide) and (ii) by changing the way in
which methods provided by the original tool work (this is what's meant when you hear or read something like "just
subclass ABC and override XYZ").

When overriding existing methods you again have two options: (ii a) provide the full method definition yourself or (ii b)
call the original method from the parent class and do some custom stuff before or after. Following the latter approach is
sometimes referred to as loose coupling and addMember demonstrates this by calling
BaseTool.addMember(self, id, password, roles, domains, properties) (note the slightly different
phrasing of the call) before calling notifyAdmin . The advantage of this is that our addMember method will
automatically track changes to Plone's membership tool's addMember method as Plone evolves even though we
override it.

In order to make this custom tool work, you (or your users) must be sure to configure your MailHost object (in the
portal's root folder) and the email_from_address property of your site object appropriately or notifyAdmin will
not work (throwing an error (exception), or just do nothing).

Note to the purists: I know that you don't have to subclass the MembershipTool to add such a notification because
there are explicit hooks in the registration process for exactly that reason but I wanted to demonstrate the concept of
loose coupling with something that is simple but meaningful. Suggestions for better examples are always welcome ;-)

Exercise (CMF/Plone background - createMemberArea): Use the notifyMemberAreaCreated hook that is
called by createMemberarea to maintain a log file on disk about the generation of memberareas (when and for
whom). (Solution)

Programming Plone - The MySite Tutorial

21

One final remark on the security declarations: In contrast to the previous example (MyTool) this tool uses Method
Security Assertions meaning that every method provided has an individual security assertion. Again, see the Zope
book and Zope developer's guide for more on one of the key concepts of Zope.

Note: There is no explicit docstring on our subclassed membership tool. This is not an omission but done on purpose
because later in the module we call:

MembershipTool.__doc__ = BaseTool.__doc__

to set the docstring to the one from the parent.

This concludes the comments on the tools and we now turn to the content types.

 Deadline.py

The Deadline object is a straightforward Archetypes-based content type. Archetypes-based data types are defined
primarily by their schema , which is a description of the fields which are available on the archetyped objects. The
classes required to define a schema are generally available from Public.Archetypes.public , and include:

Fields — individual slots which store particular pieces of data, fields have an implicit data type (such as a String (of
characters), an Integer (whole number), or a reference to an object (often seen as References tabs in Plone)). Each
field has a number of properties which modify its behavior.

Widgets — display controls which are used to edit the values stored in the field. Widgets generally assume a particular
data type, but there are often multiple widgets available for editing any particular field type.

BaseSchema — the core Archetypes-content-object schema, including such common fields as id and title. This object
is actually the schema attribute of the BaseContent class, which in turn inherits most of its schema from the
BaseObject class.

Marshallers — objects which can reduce the content object to a particular format, and then reconstitute the object from
that format. In this case, the RFC822Marshaller is being used, this class provides encoding in the common format
of emails, HTTP requests and WebDAV.

Each Field class has its own collection of properties which affect its behavior, here we are using:

name — the name/title of the field object, (the required first argument to the Field constructor)

searchable — whether the field should be included in full-text indexing, generally speaking you'll want any meaningful
text to be indexed, but internal data (that which has no human-significant meaning) should not likely be indexed using
the searchable property. You will notice that title is marked searchable, while deadline_type is not. [XXX why is title
marked searchable when it's auto-generated? Normally you do want it searchable, but here it seems not-very-useful].

default — specifies a default value for cases where the field is not explicitly specified during object construction.

accessor — a method name which will be used to retrieve the value of the field. In the title field, this is used to
calculate the title from the combination of the parent's id and the deadline_type field. Note that specifying the accessor
in this way means that the user cannot alter the title of the Deadline. Depending on your needs, defining a default
function rather than an accessing may be more appropriate.

widget — a Widget instance to be used for editing the associated value.

Programming Plone - The MySite Tutorial

22

vocabulary — a method-name or function returning a DisplayList or a DisplayList instance which describes the
available/common choices for the field. In the deadline_type field the method DeadlineTypes is specified as the source
of the vocabulary.

Note, how the modify_fti hook is used to change some of the default settings on the archetypes-generated factory
type information. In particular global_allow is set to 0 to remove it from the default list of addable types.

Detour: FactoryTypeInformation (FTI)

FTI and its variant ScriptableTypeInformation are the kind of objects used to register the content types with the
types tool. They contain all the information necessary to deal with the individual types. That way it becomes possible to
always use the types tool to get relevant information by just passing in an object without knowing its type. E.g., "Give
me this items view method!" When passed in a document the types tool will return document_view but when
passed in a news item, it will return news_item_view . Or the portal folder's invokeFactory just calls the types
tool for an instance of a specific portal type and the types tool "knows" how to generate it - and whether the type asked
for is allowed to be placed in the calling folder (and by the calling user). Note that you can edit (most of) the properties
of the FTI objects for each type individually TTW (go to portal_types via ZMI and select the type you want to adjust
the settings for).

When providing your own content type in a file-system based product you need to specify the FTI yourself but when
using Archetypes a reasonable default will be created for you when the types are processed (by calling
processTypes in __init__.py).

You can interfere with this processing to provide custom settings as demonstrated here: global_allow controls the
impicitly addable flag. This flag controls whether the type can be added anywhere or only in folder types where it is
explicitly allowed to add this one. To place restrictions on the types available to a folder filter_content_types
needs to be set for this folderish type together with a list of allowed_content_types as demonstrated by our
custom event type in the following. content_icon specifies which icon to use for this type. (End of detour -- XXX
would this be the right place to put a more detailed description of sction settings???)

One method worth a note is maybe parentURL . This method demonstrates how to access an objects container by
using aq_parent . In order to exclude acquisition in context to ensure that we always get the parent with respect to
containment an aq_inner needs to be placed between self and aq_parent . So, self.aq_inner.aq_parent
always refers to the deadline's parent folder (i.e., the event it is a deadline of) irrespective of the current acquisition
context and self.aq_inner.aq_parent.absolute_url() is the Zope way of getting at its URL.

Another method worth a note is getStart_date . Events have a field called start_date defined in their schema.
Therefore, getStart_date is the name of the auto-generated accessor for this field's value. In addition,
getStart_date is indexed by the catalog. As a consequence thereof, getStart_date is called on deadlines
whenever they get (re)indexed. Since deadlines on the other hand don't have a field called start_date themselves,
getStart_date is found via acquisition at the deadline's parent, the corresponding event, and returns the event's
start date which is not what we want. To avoid this, we define getStart_date as an alias for the deadline's start
method.

getDisplayList will be explained further down below in the my_utils.py section.

Exercise (Archetypes background - basic concepts): Read the archetypes developer's guide at
http://plone.org/documentation/archetypes/ArchetypesDeveloperGuide. Explain the concepts of a schema , field , and
widget as used by archetypes. How can you group fields such that the edit becomes a multi-step process (split accross
several forms)? (Solution)

A note in passing on from Products.Archetypes.public import * : Usually it is considered bad style to
import everything from a module (that's what this statement does, or more precisely, everything that is listed in the

Programming Plone - The MySite Tutorial

23

module's __all__) because you can easily provoke naming conflicts and import loops especially if you do this for
several modules at the same time but here I consider this safe. Alternatively, we could have declared from
Products.Archetypes.public import BaseContent, BaseSchema, Schema, StringField,
StringWidget, SelectionWidget, DateTimeField but you see immediately that life is much easier if we just
import everthing from Archetypes.public ; this type of situation is what the import * construct is intended to
support.

Now we turn to a more interesting content type: our custom event.

 Event.py

The custom archetypes-based event type demonstrates how to replace one of Plone's default content types, here the
event type, to provide a more detailed schema and to make the event folderish (by subclassing from BaseFolder) to
allow the addition of deadlines as child objects. To restrict the addable types to deadlines only, we need to do two
things:

1. Set filter_content_types = 1 to activate filtering for the allowed content types, and

2. Set allowed_content_types = ["Deadline",] to define the list of allowed content types to filter on.

The actual replacement of the default content type by the custom content types takes place in the install where the
call to installTypes overwrites the factory type information for Event . Note, that for this to be effective, it is
essential to install MySite after any other product that itself overwrites the factory type information for Event (like
ATContentTypes) in this way because only the last change will be effective. So in general, these kinds of changes
are error-prone and should be avoided unless you are sure that you know what you are doing.

Alternatively, we could add our custom event type as an additional content type and leave the original event untouched
(or change its global_allow to false if we don't want it to be offered to the users).

Exercise (CMF Background - Type Registration): Change MySite to work as outlined in the previous paragraph. (
Solution)

Note that making Event folderish also makes events appear in the navigation tree like regular folders. Since we don't
want that, setupProperties from the Install module takes care to add them to the list of
metaTypesNotToList in addition to providing the event_types and deadline_types properties to make their
values customizable through-the-web via Zope's management interface.

Notice further how the Deadline sub-objects are included in the Event object's default property views using a
ComputedField and how it is making use of more complex, structured fields as provided by the ATExtensions
package. Furthermore, the location method demonstrats how to access individual subfields of a RecordField
which the LocationField is a subclass of.

Exercise (Archetypes background - references): Change Event.py to manage deadlines using a
ReferenceField . (Solution)

One rationale for implementing deadlines as separate content objects from their associated event is to make it easy to
compile lists of upcoming deadlines using simple catalog queries. You can see how simple this process becomes by
looking at the page template skins/my_templates/portlet_deadlines.pt and the event topic registered in
the Install.py module.

However, while cataloging and searching deadlines becomes much easier with this approach, we have introduced a
usability problem for our Event's workflow. Generally speaking, a Deadline should have the same workflow state as
its parent Event . One can imagine some (rare) instances where a different state might be useful (for instance where

Programming Plone - The MySite Tutorial

24

a deadline for a publicly visible project is internal), but this is not the norm. In the normal case, we would like the
Deadline's workflow state to track that of its parent except for the pending state. We do not want users to have to
submit and/or review each Deadline separately for every Event.

The easy solution to this problem would be to eliminate the explicit management of a Deadline's state, instead
providing the Deadline with a method to return their parent Event's review state as their own. Obviously, this would
make it difficult to implement that (admittedly rare) case where a Deadline requires a different state from the parent
Event.

Instead of using this partial solution, we have provided a custom workflow for the Event object. The purpose of the
custom workflow is to automatically update the Deadline children with exactly the same workflow transition as is
experienced by their Event parent (except for the submit transition). You will notice that this approach still allows for
manually altering a Deadline's publishing state for exceptional circumstances, but eliminates the tedious process of
manually updating that state for the common case.

 CompoundWorkflow.py

The module CompoundWorkflow.py implements the custom workflow outlined in the previous section. The purpose
of this workflow is to automatically alter the workflow state of Deadline objects when their Event object changes
workflow state. To accomplish this, we duplicate the default Plone workflow then add a script to be executed for every
state transition save the submit transition.

To create the PythonScript object, we pass the ID/name of the script to the constructor, then write the source code
for the script to the resulting object. You will want to take particular note of the syntax for accessing the object being
affected by the state transition (the Event, in this case).

Once we have created the PythonScript object, we need to make it available to the workflow object. The workflow
object is folderish , which is to say, an object which can contain other objects (also known as an ObjectManager). Per
default, a workflow has subfolders for states , transitions , and scripts . We store the PythonScript
object using the identifier plusChildren within the workflow object's scripts subfolder using the _setObject
method of ObjectManagers .

Having made the script available to the workflow, we can now set the script to be executed for each appropriate
transition. To do this, we iterate over the sets of transitions , setting the after_script_name property to the
identifier string plusChildren if the transition is not named submit . The after_script_name is looked up for
every transition and if a non-empty value is found, a script with the corresponding id is looked up in the scripts
folder and applied to the object (here the plusChildren script we have just created and registered).

Exercise (CMF background - workflow): Implement an alternative solution to this problem as outlined above (not
having deadlines being subject to workflow themself). Hint: Make sure deadlines get reindexed on state changes of the
parent event. To this end, figure out where indexObject and reindexObject are defined (e.g., using DocFinder
or by searching through CMF's source code for def index(using a tool like grep). Now, override these methods
in Event to also (re)index the deadlines. (Solution)

The approach demonstrated here is not fully generic because if you have a workflow where you can reach the
pending state from states that do not provide the publish transition also, the subobjects can get stuck in there
(think for a while why this is the case) but in combination with Plone's default workflow this can never happen.

Now we have covered the key elements of the MySite product. We have defined two content types, two portal tools, a
product initialisation module, a product installation module, and a custom workflow. What remains are the supporting
files and the skins folder.

 my_utils.py

Programming Plone - The MySite Tutorial

25

The my_utils module demonstrates the use of a simple Python module to encapsulate functionality for use
throughout the product (and potentially for other products as well). You will notice that we have imported the
my_utils module from both the Event and Deadline modules like so:

from my_utils import getDisplayList

This form of import relies on relative import semantics from Python. A more reliable form, and one which would work
from another product, would be:

from Products.MySite.my_utils import getDisplayList

An even commonly-used idiom for this method of importing is to use:

from Products.MySite import my_utils

and then reference the function using my_utils.getDisplayList . This makes it clearer where methods defined
by my_utils come from.

The my_utils module provides the getDisplayList function which is used by the content types to retrieve
vocabularies from the portal properties setup by the Install script's setupProperties function. These properties can
be edited by the site's administrator using the Zope Management Interface (ZMI) to customize the operation of the
product.

Note the decomposition of the problem into three separate functions, one responsible for retrieving property values
from the portal_properties tool, one for converting a list of values into a DisplayList , and one to provide the
externally callable API for the module. This allows users of your module to reuse the functionality rather than needing
to reimplement it in their own projects/customizations.

Exercise (Python Background - Signature): Make the getDisplayList function more useful by allowing for an
optional argument to specify the property sheet from which to get the value. (Solution)

 refresh.txt

During Zope product development (and Plone development is just a subset of Zope product development) it is often
useful to have the product automatically update itself by being reimported. This process, called refreshing is enabled
via the refresh tab in the ZMI. However, the refresh tab is only displayed if there is a refresh.txt file in the product
directory (to prevent refreshing of products where this is not safe to do).

As far as Zope is concerned, the file can be empty (have nothing in it). However, certain archiving programs,
particularly WinZip , tend to ignore files with 0 length. So, to support Windows users, it is good practice to never include
such files in your products, instead add a few lines of text describing the purpose of the file.

For refresh.txt , leaving the file out has very little impact on the product. After all, it is simply enabling a feature
intended for use by developers (not end-users/admins). Until a developer attempts to enable refreshing via the ZMI
there is no difference in the operation of the product.

However, should you include a 0 length __init__.py , you may very well find that a sub-package of your product
becomes unavailable.

Exercise (Optimization): Explain the diffuse statement made above about the problem that an empty __init__.py
could cause. (Solution)

 tool.gif

Programming Plone - The MySite Tutorial

26

This file provides the icon for the tools that MySite provides. The icon is assigned to the tools in the __init__.py
script during the call to utils.ToolInit . Icons are generally 16x16 pixels, in GIF or PNG format (with
transparency).

Note that the icon must be available to Zope-level code to allow browsing via the ZMI, so it is not part of the skins used
by the Plone-level code. [XXX Check this assertion, is there any way to register a skin-based icon for the tool? I think
someone is working on making this possible.]

 version.txt

Optional but recommended, even if you don't plan to distribute your product. Sooner or later you will have the need to
destinguish between different versions of your product, so you better assign version numbers from the onset. Where to
start and how to count is somewhat arbitrary if you are on your own but the bigger projects get the more formalized
versioning tends to become (including dedicated rules for what to consider a major or minor release upgrade, when to
call it alpha , beta , or a release candidate (RC) and what kind of changes are allowed (or more importantly:
NOT allowed) in which phase).

Including a version.txt file in your product is optional, but generally recommended even if you are not intending to
distribute your product. Sooner or later you'll needed to distinguish between multiple versions of your product, so
assigning version numbers at the outset is generally a good idea.

Your choice of versioning scheme is largely a matter of choice. Larger projects will tend to have formalized versioning
policies, including rules for what is considered a major or minor release, what is considered alpha, beta or release, and
what kind of changes are allowed, or more importantly disallowed, in which phase of development.

The text you included in version.txt shows up as the version property of the product in the ZMI, and also under
plone setup -> Add/Remove products -- it is therefore user-visible to some extent, and should try to be at least
somewhat informative (don't make your user guess whether zalphrod.venn is an earlier version than
zalphrood.venn).

Which leads us to the last element of the product, the directory holding the skin elements:

 skins

This folder, which needs to be registered with Zope in MySite's __init__.py , holds three subfolders. These in turn
get registered as FilesystemDirectoryView for the skins tool by the install function from the Install
module calling install_subskin from Archetypes.Extensions.utils . They hold the skinnable elements
which site administrators may customize.

Normally the five content items included here would not justify splitting into three separate subdirectories, but it does
handily demonstrate the ability to have an arbitrarily nested skin folder structure. That demonstrated, try to keep your
hierarchy flat, as nested subfolders (i.e. more than one level deep) can be difficult to work with when customizing skins
through the web unless you are explicitly registering each further subfolder as its own FilesystemDirectoryView .

It is generally a good idea to group your content elements enough to keep your project manageable, but not so much
as to make finding any given element more difficult. A good rule of thumb is to start by distinguishing between
templates, images and scripts.

The example content provided by MySite should be immediately understandable. my_images contains the icon for
the Deadline content type, my_templates provides two templates, one new (portlet_deadlines.pt) and
one customized (search_form.pt), and my_scripts provides two little helper scripts that are needed by the
custom search template.

Programming Plone - The MySite Tutorial

27

MySite provides the following skinnable objects:

 • skins/my_images/deadline.png: This is the default icon for the Deadline content type. It is specified as
deadline.png in a class property of the Deadline class definition. Because it is a skinned element, it is
loaded from the product context using the current skin resolution order.

 • skins/my_templates/search_form.pt: Customized version of the default Plone search form. With
MySite installed, you will find three different search_form.pt page templates in your Zope instance. One is in
CMFDefault/skins/zpt_generic , another in CMFPlone/skins/plone_forms , and the last here in
MySite .

 • skins/my_templates/portlet_deadlines.pt: The portlet (box) displaying upcoming deadlines. Of
particular note is the use of the portal_catalog.searchResults method to define the set of catalog brain objects to
display. Also of note, defining a new portlet is technically speaking a process of defining a new METAL macro to
be expanded in the main Plone page template, so the material surrounding the macro definition DIV doesn't
appear in the final web pages.

 • skins/my_scripts/getSearchableTypes.py and getNotSearchableTypes.py: Two
PythonScripts used by the search_form page template. getNotSearchableTypes simply returns a
static set of non searchable type names, i.e. those which should not be included on the search form.
getSearchableTypes retrieves all types from the portal which are searchable (i.e. not non searchable).

Exercise (optimization): Figure out in which respect the custom search template differs from Plone's original one by
(a) reading their respective source code and (b) invoking them through a browser. Change the way in which the
non-searchable types are managed from a script to a portal property. (Solution)

The final remark is left for the last line of getSearchableTypes.py . Look at this list comprehension:

return [type for type in types if type not in types_to_exclude]

Pause for a moment to figure out what this does. If you see the beauty, then Python got you. ;-)

Exercise (List Comprehension): Rewrite this last statement in any other programming language of your choice and
send it to me at r.ritz@biologie.hu-berlin.de . (Solution)

Programming Plone - The MySite Tutorial

28

Customizing Archetypes

In the previous chapters you have seen how to use Archetypes including some of its extensions for generating custom
content types. Here you will learn how to adapt Archetypes further to fit your needs. In order to be able to do so,
however, you better have a basic understanding of Archetypes architecture first.

Archetype's Approach

Archetype's key feature is the support of schema based content type generation for CMF/Plone. That means that all
you have to do (except for some minor add-ons if you don't use ArchGenXML) is to define a schema, assign it to a
custom sub-class of BaseContent or BaseFolder , register, initialize, install and you are done.

Now what's a schema ? In a nutshell, a schema is just a list of fields, and that's exactly how you define it in your code.
You import the Schema class and call it: Schema(...) . That way, you generate an instance. The constructor of the
Schema needs to be passed at least one positional argument (the first) and that has to be a tuple containing the
fields. This is why you have the somewhat funny looking two parentheses in your code.

Choosing the appropriate fields for your schema is usually the main part of your work when defining a custom content
class. In more abstract terms, this is called data modeling , and it usually pays off to think first what you will need in
the end because changing the data model later on generally doesn't make life easier. Archetypes provides a variety of
generic fields that you can choose from and other products like ATExtensions provide some more specific ones of
common interest. But if there is nothing that fits your needs, you might want to define your own field type as explained
below. In your code, you instantiate fields the same way as your schema, i.e., you import the field defining classes you
need and call them in the order that you want them to appear in your schema. Like the schema's constructor, fields
need to be passed at least one positional argument defining the field's id . All other properties of the field (like
required , searchable , default , etc) can be configured optionally. While most of these properties should be
self-explaining there is one particular property that deserves more attention: the widget property.

Widgets are responsible for rendering the fields (or, more precisely, their value) in the different views of your content
type like base_view or base_edit . Again, in the schema declaration you generate an instance of a widget by
calling its class and assigning this instance to the field's widget property. You can optionally pass in named
arguments to configure the widget if needed. Maybe the most important property to consider here is the macro
property as this defines the page template where to look for the macros to use when rendering the widget. Like with
fields, Archetypes provides a variety of generic widgets and further products like ATExtensions provide some more
specific ones. But if there is nothing that fits your needs, you can define your own widgets or macros as outlined below.

In addition to the macros used by the individual widgets you can customize the macros used by different views like
base_view , table_view or base_edit . When rendered, these views look for macros called header , body ,
folderlisting , and footer . To override the defaults that come with Archetypes for your specific types you need
to provide a template with the id:

<portal_type>_view or <portal_type>_edit

Here you can provide your own macros now as needed. See below for an example.

Once base_edit gets submitted, it calls validate_base and if all values pass validation without error,
content_edit is invoked to actually do the content update. Input validation is another key feature supported by
Archetypes and there are a number of generic validators available for you to be used in your schema declaration. But
maybe you have a need for a more specific validator. See below to learn how to define and add your own one.

That's it for the big picture. Now, let's turn to the details of doing the customizations. To this end, we need some content
types making use of our customizations, so let's generate a little playground first.

Programming Plone - The MySite Tutorial

29

Playground

Say we want to add an address book to our site. We want it to consist of a folderish type (Address Book) that is
designed to hold and list contact informations (Contact). As of now, we don't want this to be a separate product (we
will do that later) so we just add a module (AddressBook.py) to the MySite product folder containing the following
code:

from Products.Archetypes.public import *

AddressBookSchema = BaseSchema

ContactSchema = BaseSchema + Schema((
 StringField('name'),
 StringField('email'),
 StringField('homepage'),
))

class AddressBook(BaseFolder):
 """specialized folder for managing contact information"""

 archetype_name = "Address Book"

 filter_content_types = 1
 allowed_content_types = ('Contact',)

 schema = AddressBookSchema

registerType(AddressBook)

class Contact(BaseContent):
 """entry in an address book"""

 global_allow = 0

 schema = ContactSchema

registerType(Contact)

Finally add the line import AddressBook to MySite's __init__.py , restart Zope and reinstall MySite . You will
now have two new content types available in your site. Check them out! Add an address book with a few contacts and
see how they look like.

Well, while this is a good starting point already, there are a number of things that could be improved. Email addresses
and homepages could be links, for instance, id and Title could be used to hold the name or inferred from the it, the
name could be structured into first name and last name in order to be able to sort on the last name in the address
book's view which could also be more informative by listing the email address in addition, values for the email
addresses and homepages could be validated on entry, maybe one or the other should be required, and so on. How to
do all these kinds of changes will be the subject of the following sections.

Basic Customizations

Let's start with improving the contact's view. First, we want to switch from using base_view to using table_view .
To achieve this, add the following action declaration to the Contact class:

actions = (
 {
 'id' : 'view',
 'name' : 'View',
 'action' : 'string:${object_url}/table_view',
 'permissions' : (CMFCorePermissions.View,),
 'category' : 'object',
 },

Programming Plone - The MySite Tutorial

30

)

and don't forget to import CMFCorePermissions before. Restart, reinstall, and see how the contact view has
changed.

Note: Alternatively, you could do this change by editing the contact's type information registered with the types tool in
ZMI. Go to portal_types > Contact > Actions and change the action property of the view action. Note,
however, that you will have to repeat this change after every re-installation of MySite , so I suggest you do the
changes in the class definition.

BaseSchema (part 1)

It seems natural to use the title field here to be used for the name, so let's do this now. Remove the
StringField("name") declaration from the schema and customize BaseSchema instead as follows:

ContactBase = BaseSchema.copy()
ContactBase['title'].widget.label='Name'
ContactBase['title'].widget.description='The name of the person'

ContactSchema = ContactBase + Schema((
 StringField('email',
 ...

Don't forget to copy BaseSchema before customizing it, otherwise all content types using BaseSchema would be
affected. Note further, that individual fields can be accessed by subscription (that means using a[b] like syntax)
whereas field and widget properties can simply be qualified like attributes (a.b like syntax, also called attribute-like
access) even though we declare them as values in the _properties dictionary. The fact that this works in one of the
consequences of registering the properties as demonstrated below.

Macros

Next, we want to embed the email address and the homepage URL in anchor (<a>) tags. As it is not considered best
practice these days to offer email links in anonymous views, we also want to restrict the email link to non-anonymous
visitors of our site.

As outlined above, we need to provide page templates with the definitions of the view macros to be used by our email
and homepage field respectively. So, add a page template called email_widget.pt to the my_templates skin
folder (alternatively, you can do this TTW using the custom skin folder) containing the following code:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone">
 <head><title></title></head>
 <body>
 <!-- Email Widget -->
 <metal:view_macro define-macro="view"
 tal:define="email accessor">
 <div
 tal:condition="isAnon"
 tal:content="python:email.replace('@','(at)')">
 email
 </div>
 <a href="#"
 tal:condition="not:isAnon"
 tal:attributes="href string:mailto:$email"
 tal:content="email">
 email

 </metal:view_macro>

Programming Plone - The MySite Tutorial

31

 </body>
</html>

The important part here is the macro definition. Everything else is stereotypic and needed to turn the template into
proper XHTML.

Now we need to inform our contact's email field that it should use this macro instead of the StringWidget's one by
specifying the widget's macro_view property in the field declaration:

StringField('email',
 widget=StringWidget(macro_view="email_widget"),
),

Restart Zope (or refresh MySite) and see how the contact's view changes. Note, that you neither need to reinstall the
product nor that you have to provide any migration script nor do a schema update for this change to become effective
even for already existing contact instances. This is because the schema is a so-called class attribute where the value is
a schema instance which is instantiated on Zope startup and inherited by all contact instances by virtue of being
generated from this class (XXX is this the right way of phrasing this???)

Exercise (widget macros): Repeat the analogous steps to embed the homepage URL in an anchor tag.

Widgets

In the email widget's view macro above we mask the @ sign to make it more difficult for robots to harvest the email
address. Hard-coding the value replacing the @ in the template is not the most brilliant way of doing this as it cannot
easily be changed or configured in the schema declaration.

There are various ways now in which we could enable this, one being to define a custom widget where we add a
property to the widget as follows: Generate a new module (called, e.g., MyATE.py for MyArcheTypesExtensions) and
put this code in there:

from AccessControl import ClassSecurityInfo
from Products.Archetypes.public import StringWidget
from Products.Archetypes.Registry import registerWidget, registerPropertyType

class EmailWidget(StringWidget):
 _properties = StringWidget._properties.copy()
 _properties.update({
 'macro_view' : "email_widget",
 'at_mask' : '(at)',
 })
 security = ClassSecurityInfo()

registerWidget(EmailWidget,
 title='Email',
 description="Renders an Email address in an anchor tag.",
 used_for=('Products.Archetypes.Field.StringField',)
)
registerPropertyType('at_mask', 'string', EmailWidget)

Note, how we define the email widget to be a subclass of the string widget and how we extend its properties by first
copying them from the string widget before updating them. And while we are at it, we also put the view macro
declaration here. Next, the widget gets a security declaration and finally we register the widget and its new property in
order to make them available to the entire framework.

In the macro defining the view above we can now access the value of this property like any other widget property, i.e.
widget/at_mask in path expressions or widget.at_mask in Python expressions. Now, change the contact's
schema declaration: import the email widget and make the email field using it. Finally, edit the view macro in the
email_widget template to use the new property and convince yourself that it works.

Programming Plone - The MySite Tutorial

32

Exercise (widgets): Repeat the steps above to generate an URL widget where the value of the anchor's target
attribute can be configured in the schema declaration.

Fields

Defining custom fields works pretty much the same way as generating custom widgets. You subclass an existing one,
copy its properties and update and extend them as needed. In addition, you can add new methods to the field or
override inherited ones. Here, we will illustrate this by defining a UrlField where we add a property called
default_protocol in order to provide a configurable way to set a - well - default protocol. We then override the
StringField's set method by fixing the value to be stored if no protocol (http , https , ftp ...) was entered on the
contact's edit form. To do all this add the following code to MyATE.py:

class UrlField(StringField):
 _properties = StringField._properties.copy()
 _properties.update({
 'type' : 'url',
 'widget' : UrlWidget,
 'default_protocol' : 'http',
 })
 security = ClassSecurityInfo()

 security.declarePrivate('fixProtocol')
 def fixProtocol(self, value):
 if not value or '://' in value:
 return value
 return '://'.join([self.default_protocol, value])

 security.declarePrivate('set')
 def set(self, instance, value, **kwargs):
 value = self.fixProtocol(value)
 StringField.set(self, instance, value, **kwargs)

where the UrlWidget has to be defined before like in:

class UrlWidget(StringWidget):
 _properties = StringWidget._properties.copy()
 _properties.update({
 'macro_view' : "url_widget",
 'target' : '',
 })
 security = ClassSecurityInfo()

The last thing needed is to register the new field, widget and properties:

registerWidget(UrlWidget,
 title='Url',
 description="Renders a Url in an anchor tag.",
 used_for=('Products.MySite.MyATE.UrlField',)
)

registerField(UrlField,
 title='Url',
 description='Used for storing urls.')

registerPropertyType('target', 'string', UrlWidget)
registerPropertyType('default_protocol', 'string', UrlField)

That's it. Now, our new field is ready to be used in the contact's schema declaration.

Exercise (fields): Define a custom email field to incorporate the widget settings made so far. Note, how the schema
declaration for the contact type gets apparently simpler.

Views

Programming Plone - The MySite Tutorial

33

From Archetypes-1.3.x onwards, base_view includes a folder listing for folderish types like our address book. If you
look at the source code of base_view you see that there are altogether four macros (header , body ,
folderlisting and footer) that define the view. What we want to do now is to selectively override the
folderlisting macro for the AddressBook type.

Furthermore, we want to be able to configure the fields of the contacts in the address book to be shown in the listing.
So, we first add a LinesField called listed to the address book's schema that will only be visible in the address
book's edit view:

AddressBookSchema = BaseSchema + Schema((
 LinesField('listed',
 default=('email','homepage'),
 vocabulary='contactFields',
 widget=PicklistWidget(description="Here, you can specify the fields from the contacts to be included in the listing.",
 visible = {'view' : 'invisible'},
),
),
))

Note the visible declaration on the widget. To provide the vocabulary for this field, add:

def contactFields(self):
 """returns a list with allowed field ids from the contact's
 schema for inclusion in the listing"""
 return [f.getName() for f in ContactSchema.filterFields(schemata='default')\
 if f.getName() not in ['id','title','name']]

to the AddressBook's class definition. See how we obtain the field names from the ContactSchema restricted to the
default schemata set. Otherwise all meta data fields would be included here as well.

Next, we create a page template (e.g. in the custom skin layer) with the id addressbook_view making use of this
field:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone">

<body>
 <div metal:fill-slot="main">
 <metal:listingmacro define-macro="folderlisting">
 <tal:foldercontents define="folderContents python:here.contentValues()">
 <tal:listing condition="folderContents">
 <table class="listing">
 <thead><tr>
 <th>name</th>
 <div tal:repeat="field_name here/getListed">
 <th tal:content="field_name"> name </th>
 </div>
 </tr></thead>
 <metal:block tal:repeat="obj folderContents">
 <tr tal:define="oddrow repeat/obj/odd"
 tal:attributes="class python:test(oddrow, 'even', 'odd')">
 <td metal:define-macro="listitem"
 tal:define="url obj/absolute_url;
 icon python: obj.getIcon(1)">

 <img src="" alt=""
 tal:attributes="src string:${utool}/${icon};alt here/title_or_id" />

 <a href="#" tal:attributes="href url"
 tal:content="obj/title_or_id" />

 </td>
 <td tal:repeat="field_name here/getListed">
 <metal:data use-macro="python:obj.widget(field_name)" />
 </td>

Programming Plone - The MySite Tutorial

34

 </tr>
 </metal:block>
 </table>
 </tal:listing>
 <p class="discreet"
 tal:condition="not: folderContents"
 i18n:translate="description_no_contacts_in_address_book">
 There are currently no entries in this address book.
 </p>
 </tal:foldercontents>
 </metal:listingmacro>
 </div>
</body>
</html>

This is only a slightly modified version of Plone's default folder listing macro (but with a different id to match Archetypes
naming) where we make use of the configured fields to be included in the listing and where most of the type specific
declarations have been removed because we don't need them here. Note specifically, how we use the widget specific
macros to render the field values in this listing as well (the line that reads <metal:data
use-macro="python:obj.widget(field_name)" />).

Validators

Another key feature of Archetypes is its capability to validate the user input. For every field in the schema you can
configure whether a value is required or whether its value has to be in accordance with certain rules. To this end there
are various different validators provided by Archetypes but it is also easy to define custom ones.

Since valid email and url values do require a certain structure it makes of course sense to check for it. Add the
validators declaration to the EmailField if you did the exercise above already or define the field now in 'MyATE':

class EmailField(StringField):
 _properties = StringField._properties.copy()
 _properties.update({
 'type' : 'email',
 'validators' : ('isEmail',),
 'widget' : EmailWidget,
 })
 security = ClassSecurityInfo()

Add an analogous declaration to the UrlField (validators : (isURL ,)). Note that validators (plural!) is
actually expecting a sequence meaning you can add an arbitrary number of different validators to be called one after
the other to do their respective check (the concept of a validationChain as this is called has been introduced after
AT-1.3.0-b2).

Did you notice that we have a problem now? Our default_protocol feature of the UrlField is not working
anymore because the URL validator complains before the value gets changed. As the validators are alway called
before content_edit which in turn calls the fields' mutators there is no other way out then skipping validation here
or, better yet, providing our own validator. To do so, add the following code to 'MyATE':

import re
from Products.validation.interfaces import ivalidator

class PartialUrlValidator:
 __implements__ = (ivalidator,)
 def __init__(self, name):
 self.name = name
 def __call__(self, value, *args, **kwargs):
 field = kwargs.get('field')
 if hasattr(field, 'fixProtocol'):
 value = field.fixProtocol(value)
 pattern = re.compile(r'(ht|f)tps?://[^\s\r\n]+')
 m = pattern.match(value)
 if not m:

Programming Plone - The MySite Tutorial

35

 return ("Validation failed(%s): %s is not a url."%(self.name,
 repr(value)))
 return 1

Note, how we access the field here that gets passed to the validator via the keyword arguments (**kwargs) as does
the REQUEST and the contact instance. The hasattr check is done to catch cases where this validator is applied to
fields that don't provide the fixProtocol method and all the rest is basically copied from the original url validator
(admittedly not the most robust one).

In order to make our new validator available to field definitions or schema declarations we still have to register it with
the validation machinery. This is usually done in your product's __init__.py but as we don't provide our own
product here (yet), add the following lines to MySite's '__init__.py':

the custom validator
from Products.validation import validation
from MyATE import PartialUrlValidator
validation.register(PartialUrlValidator('isPartialUrl'))

Now, we can use our new isPartialUrl validator after restarting Zope (don't forget to change the UrlField
declaration to also use it). Note that this is the second time that we change code from a product that we should better
leave alone in order to be able to update it independently of our new additions. Whenever changes like these have to
be made it is worthwhile considering whether we would not be better of if the new stuff were organized as a product of
its own. This is what we will do now.

Refactoring

Rewriting or reorganizing (parts of) a product's code in order to make the software more generic and robust is generally
referred to as refactoring. While there are various things to be considered when refactoring a Plone/Archetypes based
product, I will only illustrate two particular situations here: splitting products and changing a schema. The main issue to
worry about when doing those changes is to be backwards compatible in order not to loose any data.

Splitting Products

If products develop over time they tend to grow bigger and bigger in terms of their code base and functionality
provided. It then often deems appropriate to split a product into several ones but there is at least one issue to be aware
of when doing this with any Python/Zope based software module as we will see now.

Say we want to factor out our address book. That means we move all address book related code out of the MySite
product into a new product that we will call MyAddressBook . The basic stuff is easy: create a new folder called
MyAddressBook in your Zope's product folder (the same where the MySite product folder is located). Copy the
AddressBook.py and MyATE.py modules over and create a skins folder containing an addressbook sub-folder
where you place the addressbook_view , email_widget , and url_widget templates. Revert the changes that
you did to MySite's __init__.py (remove the registration of our custom validator and the import of the
AddressBook module) and add an initialization module to MyAddressBook instead. This __init__.py should
contain the following code:

from Products.CMFCore import utils
from Products.CMFCore.DirectoryView import registerDirectory
from Products.Archetypes.public import process_types, listTypes
from config import *

the custom validator
from Products.validation import validation
from MyATE import PartialUrlValidator
validation.register(PartialUrlValidator('isPartialUrl'))

the module containing the content types
import AddressBook

Programming Plone - The MySite Tutorial

36

registerDirectory(SKINS_DIR, GLOBALS)

def initialize(context):
 content_types, constructors, ftis = process_types(
 listTypes(PROJECTNAME),
 PROJECTNAME)
 utils.ContentInit(
 PROJECTNAME + ' Content',
 content_types = content_types,
 permission = ADD_CONTENT_PERMISSION,
 extra_constructors = constructors,
 fti = ftis,
).initialize(context)

provided that we also add an appropriate config.py file:

from Products.CMFCore.CMFCorePermissions import AddPortalContent

ADD_CONTENT_PERMISSION = AddPortalContent
PROJECTNAME = "MyAddressBook"
SKINS_DIR = 'skins'
GLOBALS = globals()

Finally, we have to add the Extensions folder containing our Install.py with the following code:

from StringIO import StringIO
from Products.Archetypes.public import listTypes
from Products.Archetypes.Extensions.utils import installTypes, install_subskin
from Products.MyAddressBook.config import PROJECTNAME, GLOBALS

def install(self):
 out = StringIO()
 installTypes(self, out,
 listTypes(PROJECTNAME),
 PROJECTNAME)
 print >> out, "Installed %s's content types." % PROJECTNAME
 install_subskin(self, out, GLOBALS)
 print >> out, "Installed %s's skin." % PROJECTNAME
 print >> out, "Successfully installed %s." % PROJECTNAME
 return out.getvalue()

You may want to add further files like version.txt , refresh.txt or a README but from a functional perspective
you are done now. Note that these steps are quite stereotypic, so you can basically cut and paste those files from other
products and adjust them as needed.

Restart Zope and check out your new product. Do this first in a new Plone site and convince yourself that it can be
installed using the quick-installer.

Return to the site that you have been using previously and to be on the safe side, go to its types tool in ZMI and
remove the factory type informations for the AddressBook and Contact types. Now install MyAddressBook here
as well. Convince yourself, that you can add address books to the site including contacts. Fine, so everything works as
expected? Well, not quiet yet. As you may have noticed by now, all address books that you had generated previously
seem to be gone! That's usually not what you want. But done worry too much. The data are not gone. It is just that
Python cannot unpickle them (or with other words: Zope/Plone cannot get them out of the ZODB) because their class
path changed.

It appears to Python that the classes from which the old address books and contacts had been generated have
disappeared and it therefore does not know how to re-instantiate them. In order to get your old address book and
contact instances back, you have several options: either re-introduce them to MySite or add a so-called module
alias. For the first option, go into the the MySite product folder and create a file called AddressBook.py (more
generally, you use the name of the module that used to contain the class definitions for the content types before the
refactoring) containing one single line of code:

Programming Plone - The MySite Tutorial

37

from Products.MyAddressBook.AddressBook import AddressBook, Contact

Even better is the creation of a module alias because you can do this without even touching MySite at all. To this
end put the following lines into the __init__.py of MyAddressBook after the import AddressBook statement:

import sys
sys.modules['Products.MySite.AddressBook'] = AddressBook

This has the effect that our class definitions will be available again using their old path even though their actual position
moved to a different location. Restart Zope and confirm that your old address books are back again including their
content.

Note: Of course we could and should have done this immediately when factoring out the address book from MySite .
It was left out on purpose to demonstrate the problem that results from omitting this.

Schema Evolution

Purists in the field say schemata don't evolve but they are fixed to begin with. While this helps of course a lot, practice
tells that this is simply unrealistic. Fortunately for us, changing a schema isn't that hard with Archetypes.

Adding a field

Adding a field to a schema declaration is really straight-forward. Just add the appropriate field declaration to the
schema in question, restart Zope (or refresh the product) and you are done. Confirm this by adding two fields to the
contact schema to hold a street address and phone numbers. There are specific field types tailored to this end
available from ATExtensions, so all you need to do is to add the following lines to 'AddressBook.py':

from Products.ATExtensions.at_extensions import AddressField, PhoneNumbersField
ContactSchema = ...
 ...
 UrlField('homepage'),
 AddressField('address'),
 PhoneNumbersField('phone'),
))
...

Deleting a field

Deleting a field is as easy as adding one: just remove it from the schema declaration, restart and you are done. There
is only one thing to be aware of. Removing a field from the schema does not remove its value from the objects affected.
For fields holding short strings or numbers this is usually not a problem - the old instances are just a little bit heavier
than necessary - but if you are dealing with large text or image values this might be a problem. So if you want to
remove the field's value from its storage you usually write a little script (a so-called visitor) that iterates over all objects
in question and removes the value explicitly (XXX: check whether updateSchema from the archetypes tool actually
does this). Note, that we actually did remove a field already when we were moving the name handling to the title field
above and therefore removed the name field from the schema. So to remove the name values as well we could apply
the following script (to be declared as an external method on portal root):

def removeNameValuesFromContact(self):
 """removes the 'name' attribute from contacts"""
 contacts = self.portal_catalog(portal_type='Contact')
 for contact in contacts:
 obj = contact.getObject()
 if hasattr(obj.aq_base, 'name'):
 delattr(obj.aq_base, 'name')

Note, how we use the catalog to get at all Contact instances and how we make sure not to delete any acquired
attributes by restricting the operation to the objects acquisition base (i.e., the object itself). If the field would not use

Programming Plone - The MySite Tutorial

38

AttributeStorage (which is the default storage in Archetypes) we would of course have to change the way in which
we access and clear the value according to the storage used.

Renaming a field

Renaming a field consists of a combination of the two previous steps. For the schema declaration it is really just a
renaming of the field's id but to transfer the value also we need to apply a script similar to the one above where we not
only delete the old attribute but also copy the value to an attribute with the new id like in:

def restoreValues(self,type,old_id,new_id):
 """visits all instances of 'type' and moves the value
 from the 'old_id' attribute to a 'new_id' attribute
 """
 brains = self.portal_catalog(portal_type=type)
 for brain in brains:
 obj = brain.getObject().aq_base
 if hasattr(obj, old_id):
 setattr(obj, new_id, getattr(obj, old_id))
 delattr(obj, old_id)

As you can see, this method is a little bit more generic than the previous one and maybe some time in the future the
archetypes tool will contain methods like this one for our convenience (XXX: check whether this isn't already there).
Updating the catalog once you are done with those changes is usually also a good idea.

Changing the Type of a Field

When changing the type of a field there are two situations to be distinguished:

1. The value's type stays the same: This is the easy case, like when turning a StringField into an EmailField as
we did above, because here, the value itself is just a string in both cases. So we only need to change the field
declaration in the schema definition, restart Zope and we are done.

2. The value's type changes as well: This is the harder case, as we now have to take care ourselves to cast the value
from the old type to the new one. This is really application specific and there is usually no way out for you other than
writing a special purpose script to do the migration. See the next subsection for how to do something similar to this.

Customizing BaseSchema (part 2)

Wouldn't it be nice if our contacts knew about first or given names versus last or family names? To enable this, we can
add a SimpleNameField from ATExtensions which is a subclass of the RecordField with two subfields for the
first_name and the last_name , or, from the Python perspective, a field that holds a dictionary with these two keys.

If we now introduce this new field, we are confronted with the case 2 above if we want to transfer the names from the
existing contacts to the new field. As of now, the name is put as plain string into the title field, so we need to find a way
to infer first and last names from there. It is this kind of change (moving from a less structured to a more structured data
type) that is usually hard (if not impossible) to perform in general. Let's assume here, that we had always entered first
names first and that last names are usually one word. Then we can split the title's value on whitespace and take the
last element as last name all the others being first names.

So add:

from Products.ATExtensions.at_extensions import SimpleNameField, RecordWidget
...
ContactSchema = ContactBase + Schema((
 SimpleNameField('name',
 mutator ='setName',
 widget = RecordWidget(visible={'view':'invisible'})

Programming Plone - The MySite Tutorial

39

),
 ...

to AddressBook.py and provide a migration script that looks like:

def migrateNames(self):
 """visit all contacts and populate the new name field
 from the title value
 """
 brains = self.portal_catalog(portal_type='Contact')
 for brain in brains:
 obj = brain.getObject().aq_base
 name = obj.Title()
 if name:
 parts = name.split()
 if len(parts) == 1:
 first_name = ''
 last_name = parts[0]
 else:
 first_name = ' '.join(parts[:-1])
 last_name = parts[-1]
 obj.name = {'first_name':first_name,
 'last_name':last_name}

Look over all contacts after the migration and see whether you have to fix some entries where the heuristics used here
didn't apply.

The last thing we want to do is to hide the id and title fields from the edit form and to infer and set their values
from the name field instead. To do so, change the customization of BaseSchema to look like:

ContactBase = BaseSchema.copy()
ContactBase['id'].widget.visible = {'view':'invisible',
 'edit':'invisible'}
ContactBase['title'].required = 0
ContactBase['title'].widget.visible = {'view':'invisible',
 'edit':'invisible'}

Now, the only thing left is to provide the custom mutator for the name field in order to also set the values for the title
and id fields. This can be done by extending the Contact class definition to include the custom mutator:

def setName(self, value, **kwargs):
 """custom mutator to change the id and title as well"""
 # set the id from the name
 id = self.getId()
 if self.isIDAutoGenerated(id) or id.startswith('copy_of'):
 if value:
 id = self._generateId(value)
 self.setId(id)
 # now infer and set the title
 name_string = ' '.join([value.get('first_name', ' '),
 value.get('last_name', ' ')]).strip()
 self.setTitle(name_string)
 # finally call the original mutator
 SimpleNameField.set(self.schema['name'], self, value, **kwargs)

helper methods for the id generation
def _generateId(self, value):
 # use last name if possible
 candidate_id = self._normalize(value.get('last_name', 'name'))
 first_name = self._normalize(value.get('first_name', 'my'))
 while candidate_id in self.aq_inner.aq_parent.objectIds():
 candidate_id = self._nextId(candidate_id, first_name)
 return candidate_id

def _normalize(self, text):
 """lowers and removes all non-ascii characters"""
 text = text.lower()
 return ''.join([c for c in text if c in string.letters])
def _nextId(self, current, extension):

Programming Plone - The MySite Tutorial

40

 if not '_' in current:
 return current + '_' + extension[0]
 else:
 base, ext = current.split('_',1)
 if len(ext) < len(extension):
 return current + extension[len(ext)]
 if current.endswith(extension):
 return current + '_1'
 else:
 try:
 number = int(current.split('_')[-1]) + 1
 except ValueError:
 number = 123 # XXX fix me
 return '_'.join(current.split('_')[:-1].append(str(number)))

Note, how we extend the mutator to also call setId and setTitle after inferring appropriate values from the name
dictionary (which is a bit involved for the id).

To finally make use of our structured name, change the folderlisting macro to sort the entries on last name and
first name. Change the definition of folderContents using the sort function from the sequence module:

<tal:foldercontents define="items here/contentValues;
 sort_on python:(('getLastName','nocase','asc'),
 ('getFirstName','nocase','asc'));
 folderContents python:sequence.sort(items,sort_on)">

The methods getLastName and getFirstName still need to be added to the Contact class:

def getFirstName(self):
 """accessor for the name's 'first_name' subfield"""
 return self.getName().get('first_name','')

def getLastName(self):
 """accessor for the name's 'last_name' subfield"""
 return self.getName().get('last_name','')

and that's it. Apply the changes outlined above, restart Zope and see what a nice address book we have gotten.

Conclusions

Pause for while to realize what we have achieved now. Starting from a straight-forward Archetypes based product we
have developed a substantially customized product with only very little reconfiguring and additional code. This is the big
plus of using the Archetypes framework. Admittedly it is not always easy to figure out where and how to best interfere
with the framework as this needs quite some understanding of the internals but I hope I was able to demonstrate this at
least to the extend that you can get started doing your own customizations.

Probably the most advanced customization demonstrated here concerns the name handling. Note that on the edit form
we ask for first and last name separately and the values entered will be hold in the name field where the value is a
dictionary with these keys. From there, we construct a plain text version of the name and put it in the title field.
Furthermore, we also infer the contact's id by using the (normalized) last name if possible and variants thereof if not.
First and foremost this should demonstrate how you can make non-trivial customizations within the Archetypes
framework without specifying everything a new. Note in particular that we are still using Archetype's generic views like
base_view , base_edit and table_view and that we only provide one custom mutator for the name field. All
custom templating was done by selectively overriding specific macros. Everything else we use as provided or
generated by the framework.

Programming Plone - The MySite Tutorial

41

Internationalisation (i18n)

(contributed by Jean Jordan, Upfront Systems, http://www.upfrontsystems.co.za).

Definitions

Before we address this interesting topic we need to define our terms.

The two central concepts are internationalisation and localisation (i18n and l10n for short .. because 18 and 10
are how many letters were left out to make the abbreviation). Perhaps surprisingly, the concepts are somewhat
independent: a site can be internationalised without being localised, and vice versa, although internationalisation
supports localisation. A helpful dictionary definition is: Internationalisation abstracts out local details, localisation
specifies those details for a particular locale. To sum up:

Internationalisation — Creating an infrastructure and guidelines that supports translation of the user interface and
content.

Localisation — Providing translations and locale specific content, making use of the i18n infrastructure. Note that
localised content need not necessarily imply translations.

Can you think of occasions where it doesn't? innerlink 1

Plone today is thoroughly internationalised, and products exist that help site authors to localise their sites.

Plone and Internationalisation

Internationalisation in Zope has a long history and many products, which I won't summarize here. Plone itself has used
a number of products and approaches (such as Localizer and TranslationService), depending on what the
state of the art was at the time ... you can find traces of this on the web. Currently, the standard approach is to use
PlacelessTranslationService , I18NLayer , and I18NFolder .

Future plans for Plone include the unification of I18NLayer and I18NFolder , and LinguaPlone , which will
provide a less intrusive method of associating content with translations than the current containment-based approach,
and will probably replace the I18N* products.

For the purposes of this tutorial, we'll look at three topics, namely:

 • Translating Plone

 • MySite and translation

 • Translating Content

Plone is Internationalised

A lot of work has already gone into internationalising Plone. To experience this, go to the preferences page of your
browser and change the selected language to another of Plone's supported languages.

(To be added: picture of Language preferences in Mozilla)

Programming Plone - The MySite Tutorial

42

(To be added: picture of Language preferences in Internet Explorer)

Check plone.org for the list of supported languages.

When you now visit your local Plone (or indeed most public Plone sites), you should see most of the user interface
elements (all the text supplied by the system) in your language of choice. In our case, the exception would be any
Events and their Deadlines that we added in the course of the MySite tutorial. For them, we would still see texts such
as "Event Type" and "Upcoming Deadlines". Third party products are responsible for integrating with Plone i18n
infrastructure, and providing their own translations.

If you want to translate Plone to a new language, you need to work with the Plone i18n Team. This team is responsible
for assigning message IDs, quality assurance and translation conventions. Read about them on the web.

Visitors to your Plone site may or may not have their browser's Language preferences configured, depending on their
computer supplier or IT staff, and they may not know what is determining their language choice. We'll see later how the
browser negotiates which language to show.

Using the I18N infrastructure

Zope i18n uses gettext and PlacelessTranslationService.

gettext

Underlying all the Zope i18n work is the Gnu project's gettext system.

PlacelessTranslationService builds on gettext. Gettext supplies conventions for programs to support message catalogs
and tools for parsing the catalogs. The gettext message catalogs in your Plone installation may be found in
Products/<ProductName>/i18n directories on the filesystem.

PlacelessTranslationService (PTS)

PlacelessTranslationService forms part of the Plone 2.0 distribution. If it's present in your Zope instance's Products
directory, it shows up in the ZMI Control_Panel at /Control_Panel/TranslationService/manage_main
after a restart. If you go there, you'll see the list of all the message catalogs found during Zope startup, and whether
they were successfully parsed. PTS looks for message catalogs in directories called i18n . It searches for these
directories in your Zope's INSTANCE_HOME, as well as in each product directory in $INSTANCE_HOME/Products . If
you watch the Zope logfile when restarting, you'll see a lot of messages similar to this one:

2004-06-18T20:10:21 INFO(0) PlacelessTranslationService
Initialized: ['portaltransport-cs.po', 'portaltransport-ru.po']
from /<path to zope>/Products/PortalTransport/i18n

Translating Page Templates

The content of this section owes a lot (sometimes verbatim) to a good overview called i18n For Developers.

We'll begin with a theoretical digression on the translation of Page Templates, and then start translating MySite.

Let's take a simple page template (the one from the overview linked above):

<html>
<body>
 <p>Welcome to Plone.</p>

Programming Plone - The MySite Tutorial

43

 <p>There have been over
 100,000
 downloads of Plone.</p>
 <p>Please visit About Plone
 for more information.</p>
</body>
</html>

That template needs four different kinds of translation. They are:

1. The text "Welcome to Plone.".

2. The alt attribute "Plone Icon".

3. The phrase "There have been over 100,000 downloads of Plone." The number 100,000 should be calculated
dynamically, and in another language it may appear in a different position in the sentence.

4. The phrase "Please visit About Plone for more information.". In this case, About Plone should remain a link, it should
be translatable separately, and the position of the link name in the sentence may vary in other languages.

Apart from the translation work, we need to alert the PlacelessTranslationService that it needs to process this template.
We do this by specifying a domain on the HTML element. For our product, we'll use a product-specific domain:

<html i18n:domain="mysite">

The value mysite specifies which message catalogs should be consulted during translation. If we were working on
Plone templates, the value would be plone .

Case One: Welcome to Plone

We need to associate the text to translate with a message id that will be used to look up translations. If you leave the
message id blank, the text to be translated will itself be used as the id (here: "Welcome to Plone.").

If this text is a part of Plone proper (in the plone domain), for which the i18n team takes responsibility, you need to
give them a chance to assign a message id to each string to translate. Do this by using XXX for the id. Now, when the
translation team use their tools to extract all the msgids from the page templates, it's obvious which ones need fixing. If
this is a product of your own, you'll need to choose an id yourself. There are some guidelines for the naming of ids
(from the Guidelines for translators innerlink 4):

 • 'heading_': for <h> elements

 • 'description_': Explanatory text directly below

 • 'legend_': Used in <legend> elements

 • 'label_': For field labels, input labels, i.e. <label> , and for <a> elements

 • 'help_': Any text that provides help for form input.

 • 'box_': Content inside portlets.

 • 'listingheader_': For headers in tables (normally of class "listing").

 • 'date_': For date/time-related stuff. E.g. "Yesterday", "Last week".

Programming Plone - The MySite Tutorial

44

 • 'text_': Messages that do not fit any other category, normally inside

 • 'batch_': for batch-related things - like "Displaying X to Y of Z total documents"

Exercise: When will you not choose an id yourself? innerlink 2

Here, we're translating a simple phrase. To do this, we add an i18n:translate attribute to the P tag containing the
translation. Let's pretend we're translating Plone, and use "XXX" as value for 'i18n:translate':

<p i18n:translate="XXX">Welcome to Plone.</p>

Ultimately, the translation team will choose a message identifer (msgid) to uniquely identify this phrase, replacing
"XXX" with their id, and that will become the new value of the i18n:translate attribute.

Case Two: "Plone Icon"

To translate attributes, we use i18n:attributes instead of i18n:translate . The value of i18n:attributes
is a list of all the attributes that require translation. This list may include the message ids; if it doesn't, the value of the
attribute (here: "Plone Icon") will be used as the id.

For our example, the simplest possibility is:

If we wanted to translate multiple attributes, we'd have:

<img src="plone.gif" alt="Plone Icon" title="Plone Icon Title"
 i18n:attributes="alt title">

If we also wanted to specify message ids, we'd have something like:

<img src="plone.gif" alt="Plone Icon" title="Plone Icon Title"
 i18n:attributes="alt mysite_plone_icon;
 title mysite_plone_icon_title">

Note that the simple list of attributes is space -seperated, while the attribute-and-msgid list is semicolon -seperated.

Case Three: "There have been over 100,000 downloads of Plone."

As before, we use the i18n:translate attribute on the outer containing element (here, P) to mark the phrase for
translation. In addition , we add i18n:name attributes on dynamic child elements that may change position. This
gives us:

<p i18n:translate="XXX">There have been over
 <span tal:content="here/download_count"
 i18n:name="count">100,000
 downloads of Plone. </p>

When this is processed, the resulting message for translation will look like this:

msgid "XXX"
msgstr "There have been ${count} downloads of Plone."

While msgids need to be unique within their i18n:domain (that's one reason for using naming conventions), the name
only needs to be unique within the context of the enclosing tag.

Case Four: "Please visit About Plone for more information."

Programming Plone - The MySite Tutorial

45

Here we are again translating a phrase that contains a subelement that may appear in different positions in other
languanges. Furthermore, the subelement should itself be translated. To manage this, we use i18n:translate
together with i18n:name . Let's pretend that this is part of our product, and assign msgids:

<p i18n:translate="mysite_more_plone_info">Please visit

 <a href="about"
 i18n:translate="mysite_about_plone">About Plone
 for more information.
</p>

This results in two messages in the catalog, that may be translated individually:

msgid "mysite_more_plone_info"
msgstr "Please visit ${about-plone} for more information."

msgid "mysite_about_plone"
msgstr "About Plone"

The final remaining possibility is that such a sub-element may also include an attribute to be translated. In this case,
handle it as follows:

<p i18n:translate="mysite_more_plone_info">Please visit

 <a href="about" i18n:translate="mysite_about_plone"
 i18n:attributes="title" title="Go to About Page">
 About Plone
 for more information.
</p>

This results in three messages in the catalog: the above two, and additionally:

msgid "Go to About Page"
msgstr "Go to About Page"

Exercise: supply a msgid for the attribute. innerlink 3

Translating MySite

OK, enough theory. Let's translate MySite and see what problems we encounter on the way!

Preparing the templates

Take a look at the MySite tempates in skins/my_templates . You'll notice that the preparatory work has already
been done: the HTML elements have i18n:domain attributes, and there are i18n:translate attributes elsewhere
in the templates. (You'll notice that MySite has very little content to translate.)

portlet_deadlines

The default domain for translations in this template is specified on the HTML element:

<html xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 i18n:domain="mysite">

Since standard Plone doesn't mention deadlines anywhere, the first string for translation belongs in this domain:

<h5 i18n:translate="box_deadlines">Upcoming Deadlines</h5>

Programming Plone - The MySite Tutorial

46

The next (and last!) string in this template is one that is common to most of the boxes in Plone. It already has a
translation in the plone domain, so let's reference it there:

<a href=""
 class="portletMore"
 tal:attributes="href string:${portal_url}/events/deadlines"
 i18n:domain="plone"
 i18n:translate="box_morelink"> More...

And that's it!

search_form

As mentioned in the solution to an earlier exercise ("Figure out in which respect the custom search template differs
from Plone's original one"), the only change to MySite's search_form is where the list of types to search comes from.
None of the text has changed. Therefore, the i18n:domain can be left at Plone:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone">

(Note to self: what's the role of the lang attributes here?)

Preparing the translation directory

PlacelessTranslationService needs an i18n directory, so let's create it:

MySite $ mkdir i18n

Now we need to put a message catalog in there. To get the strings for translation from our templates and into the
catalog, we'll use i18ndude , a tool which is part of the plone-i18n project at SourceForge -- download it from there.
(It requires Python 2.3, so check that you're up to date.) The tool includes help, but there's an i18ndude HowTo if you're
looking for a shortcut. The only slightly tricky things are choosing the right domain for processing, and to tidy the
resultant catalog. In our case, this little dance works:

MySite $ TEMPLATES=`find . -iregex '.*\..?pt'`
MySite $ i18ndude rebuild-pot --pot i18n/mysite-tmp.pot \
 --create mysite $TEMPLATES 2> i18n/report.txt
MySite $ i18ndude filter i18n/mysite-tmp.pot \
 ~/.../CMFPlone/i18n/plone.pot > i18n/mysite.pot

The first two lines are the same as the HowTo, but the last one is new. This is because the HowTo doesn't deal with
templates that contain more than one i18n:domain , and i18ndude isn't clever enough to parse one domain at a
time. That is, it generates a 'pot'-file putting all the messages in the mysite domain. We filter out the ones that are in
the plone domain by comparing the generated 'pot'-file with the Plone master file (that already contains these
msgids). This leaves us with i18n/mysite.pot containing a grand total of one (1) message (hey, it's the idea that
counts!).

Translating code in Python files

In a well-designed Zope Product, the user interface should ideally be restricted to page templates in a skin layer. At the
moment, however, there are some corners where text lingers in Python classes. One of these places is the labels and
descriptions of widgets. One way of quickly finding widgets to translate is:

MySite $ grep -r "Widget(" `find -name "*.py"`

Programming Plone - The MySite Tutorial

47

In our case this yields Event.py and Deadline.py. Here are the widgets in 'Event.py':

StringField('event_type', vocabulary='EventTypes',
 widget=SelectionWidget(
 label='Event Type',
 description='The type of the event'),),
...
UrlField("event_url",
 widget=UrlWidget(
 label="Homepage",
 description="Webpage of the event"),),

And here they are after internationalisation:

StringField('event_type', vocabulary='EventTypes',
 widget=SelectionWidget(
 label='Event Type',
 label_msgid='label_event_type',
 description='The type of the event',
 description_msgid='help_event_type',
 i18n_domain='mysite'),),
...
UrlField("event_url",
 widget=UrlWidget(
 label="Homepage",
 label_msgid="label_homepage",
 description="Webpage of the event",
 description_msgid="help_homepage",
 i18n_domain='mysite'),),

What changed? And what motivated the domain choice? innerlink 5

Here are the widgets in 'Deadline.py':

StringField('title',
 searchable=1,
 default='',
 accessor='Title',
 widget=StringWidget(visible={'edit':'hidden'}),
),
StringField("deadline_type",
 vocabulary='DeadlineTypes',
 widget=SelectionWidget()
),

Take a close look at those. Are those all the fields you see when adding a deadline? Nooo .. we're still lacking the Date
and the Comment fields. In the schema definition they're present as:

DateTimeField("date"),
StringField("comment"),

Since no widget is specified, they get the default widgets for their fields. These are CalendarWidget and
StringWidget (you need to climb a Jacob's ladder of imports and inheritance to find this out).

In order to get all these fields translated, add the i18n parameters:

StringField('title',
 searchable=1,
 default='',
 accessor='Title',
 widget=StringWidget(
 visible={'edit':'hidden'},
 label='Title',
 label_msgid='label_title',
 i18n_domain='plone',
),
),
StringField("deadline_type",

Programming Plone - The MySite Tutorial

48

 vocabulary='DeadlineTypes',
 widget=SelectionWidget(
 label='Deadline Type',
 label_msgid='label_deadline_type',
 description='Choose the type of deadline',
 description_msgid='help_deadline_type',
 i18n_domain='mysite',
)
),
DateTimeField("date",
 widget=CalendarWidget(
 label="Date",
 label_msgid="label_date",
 i18n_domain='plone',
)),
StringField("comment",
 widget=StringWidget(
 label="Comment",
 label_msgid="label_deadline_comment",
 description="Any further detail regarding the deadline",
 description_msgid="help_deadline_comment",
 i18n_domain='mysite',
)),

Here's a quick question: why provide for the translation of the Deadline's Title, if it isn't visible? innerlink 6 Another
question: why translate the Comment label? Surely Plone has already translated it? innerlink 7

Note: this is fine, as far as it goes, but it does not take translation of vocabularies (e.g.
vocabulary="DeadlineTypes",) into account.

Updating the i18n directory

We now have some more msgids to take care of. i18ndude won't find them in the *.py files, so we have to handle
them manually. Let's follow Plone's lead, and put them into a manual.pot that we keep up to date ourselves. When
you've done that, append contents of manual.pot to mysite.pot , to get a single complete master catalog.

Now, we need catalogs for our translations. I'm going to translate into Afrikaans, since that's what I know. First, ensure
that the file exists, and then bring it into sync using 'i18ndude':

MySite $ touch i18n/mysite-af.po
MySite $ i18ndude sync --pot i18n/mysite.pot i18n/mysite-af.po
i18n/mysite-af.po: 10 added, 0 removed

Remember to edit all the required the metadata (such as Language-Code !) in the opening stanza of this file, and
also in mysite.pot . Go ahead and translate the rest of the file as well. You'll find mysite-af.po in the MySite
distribution, but create a new language that you know.

Note: Don't use single quotes in your message catalogs, as i18ndude ignores them. Wrong:

msgid 'help_deadline_type'
msgstr 'Kies die soort keerdatum'

Right:

msgid "help_deadline_type" msgstr "Kies die soort keerdatum"

You need to restart Zope or refresh the catalog from the Zope Control_Panel to see the new translations.

Set your browser to the language of your translation, and you should see Events and Deadlines in your language of
choice. innerlink 8

Programming Plone - The MySite Tutorial

49

Are we done yet?

Well, yes and no. Plone and Archetypes aren't going to do any more automatically, but we haven't translated
everything. What have we missed? innerlink 9

The Plone templates look up actions in the plone domain. Look at main_template and follow the white rabbit from
there to e.g. global_contentviews , where you'll see:

 dummy

As long as our actions are named the same as existing Plone actions, this code will translate them. If we have other
actions that need to be translated, we'd have to add them to the plone domain. How do we do this? innerlink 10

Although a product ideally would keep all user-visible text in Page Templates, and out of Python classes, this isn't
always possible. And sure enough, our little MySite has a string squirreled away in Deadline.

Translating text in Python code

Here is the untranslated method:

class Deadline(BaseContent):
 [... snip ...]
 # provide a mainingful title
 def Title(self):
 """overwrite the default title field"""
 return "%s for '%s'" % (getattr(self, 'deadline_type', 'deadline'),
 self.aq_parent.getId(),
)

Here it is translated:

def Title(self):
 """overwrite the default title field"""
 m = {'deadline_type': getattr(self, 'deadline_type', 'deadline'),
 'parent_id': self.aq_parent.getId(), }
 return self.translate('deadline_title',
 mapping=m, domain='mysite')

This corresponds to the third use case under "Translating Page Templates" above. The corresponding Page Template
snippet would be:

 Deadline for
 Event

What would the entry in the message catalog look like? innerlink 11

Translating vocabularies

Both our Event and Deadline classes have fields with associated vocabularies that get their initial values from
config.py . (They are event_type and deadline_type .) Archetypes does try to translate these vocabularies
when rendering the widgets, but it always uses the plone domain (see the macros in
Products/Archetypes/skins/archetypes/widgets/). Therefore, if we need to translate these vocabularies,
we need to provide message catalog files with more msgids for the plone domain.

This is one way to do it:

Programming Plone - The MySite Tutorial

50

 • Create Products/MySite/i18n/plone.pot and prepare it just as with manual.pot.

 • Create and generate plone-XX.pot (where XX is your language) using i18ndude.

 • Go ahead and translate.

Localising content

That's it for the translation of Products. The next step is to provide for the delivery of different content depending on the
locale preferences of a user. To do this, we need current versions of the I18NLayer and I18NFolder products. The
first is part of the Plone Collective project; get it at the I18NLayer download area The other one is provided by
Ingeniweb. Get it from their I18NFolder homepage To install them, just unpack the tarballs in your Zope instance's
Products folder and restart. Then, login to your Plone instance as a Manager user, visit the Add/Remove Products
section of the Plone Control Panel, and install these products.

Although I18NLayer and I18NFolder have their limitations, you can build a fine internationalised site with them.
Let's see, what are the limitations?

 Folders and documents are treated differently — Most documents (i.e. content types that don't contain anything)
can be translated using I18NLayer, but I18NFolder provides only a translatable version of Folder. Other containers
(such as the MySite Event, which can contain Deadlines) cannot be translated.

 Not all content types can be translated — You won't be able to translate your Member details, or issues in an issue
tracker. How about bibliography entries? I'm not sure.

 They aren't integrated into all aspects of Plone — In particular, the templates for searching, the news page, the
news portlet, and other summary views will contain duplicates unless they're customised.

That said, let's create a translated area of our site.

 • Add an I18NFolder, and browse to it. Do you see a language dropdown just below the content view tabs? Err,
right, you don't. To fix this, go have a look at the ReadMe for I18NFolder in the Plone Control Panel, fix it, and
come back here. innerlink 12

 • Now you should see a language dropdown. Unfortunately this dropdown contains all the languages known to
Plone, which makes it unusable. To narrow it down, we need another product.

Fetch it from the collective PloneLanguageTool download area and install as usual. Configure the
portal_languages tool it provides by visiting it in the Zope Management Interface. In the Allowed Languages field,
choose only the ones that you'll want to provide. Visit the new folder's language dropdown again, and you should see
only the chosen languages.

In the translated folder, add some content. Content types that work well include Document, News Item, Event, Image
and Photo. Topics can just about be accommodated, as long as they have no subtopics. (Don't add I18NLayer
instances.)

When you've added a Document, and before trying to translate it, visit the folder in the ZMI (append manage_main to
the URL). Just take note of the icon and satisfy yourself that you're browsing to a Document instance here.

That done, browse to it via the Plone UI and select a new language from the dropdown. Translate everything except
the id field, which will have changed to the ISO language code of your target language. When you've saved the

Programming Plone - The MySite Tutorial

51

translation, go back to the folder in the ZMI, where you'll find that the icon has changed to the green I18NLayer icon.
Browse to this item, and inside it you'll see not one but two Document instances, each named for the language code of
the translation they provide.

This is how I18NLayer works its magic: it automatically wraps translated items in an I18NLayer container, and
renders the correct one depending on the user's preferences.

Solutions and Examples

1] Here's a couple of examples:

 • Some people use a flag to indicate the locale a document is meant for (providing alternative images, not
translations);

 • A business might display different information depending on the locale of a website visitor, e.g. listing German
forums before forums in other languages (providing alternate information, not only translations).

2] When you're re-using an existing Plone translation. Even though it requires quite intimate familiarity with Plone's
message catalog, it can be a big win to use Plone's message ids within your product. There are many generic phrases
(e.g. "Next ${number} items", msgid batch_next_x_items) that your product could use, and that are already
maintained in more languages than you could manage on your own.

3] Then you'll have:

<p i18n:translate="mysite_more_plone_info">Please visit

 <a href="about" i18n:translate="mysite_about_plone"
 i18n:attributes="title mysite_about_plone_title"
 title="Go to About Page">
 About Plone
 for more information.
</p>

4] This document recommends using product-prefixes: "There are also Product-specific prefixes, eg. the Product ZWiki
has a heading, then the prefix would be zwiki_heading_edit_wiki_page . This prevents collision between
Message IDs." When the product is in its own i18n domain, I don't believe it's necessary to use product-specific
prefixes.

5] We passed the parameters label_msgid , description_msgid and i18n_domain in both cases. Although
standard Plone also provides an Event type as part of CMFCalendar, that type isn't an archetype, and therefore
doesn't accommodate this kind of internationalisation. MySite's Event type belongs to its domain.

6] It's only hidden on the edit form. It shows up on the view template.

7] We could find "Comment" in the plone i18n domain, but we won't find a translation for "Any further detail regarding
the deadline". Because we can only specify one i18n_domain for this field, we need to translate both.

8] If you choose a language that isn't included among the 30-some provided with Plone, only Events and Deadlines will
be translated and everything else will be in a fallback language, probably English.

9] We've missed the action names (the actions = (...) parts), and the configuration text (EVENT_TYPES and
DEADLINE_TYPES in config.py). We've also missed any text that might be returned from our Python code, if we're
evil enough to have such text.

Programming Plone - The MySite Tutorial

52

10] Err, search me! Either hack the CMFPlone message catalogs, or supply another catalog for the plone domain.
Probably the second one of these.

11] For Afrikaans:

msgid "deadline_title"
msgstr "${deadline_type} vir '${parent_id}'"

12] At portal_skins/manage_propertiesForm , move up the I18NFolder layer so it looks like this:

i18n_layer
I18NFolder
i18n_layer_plone2

Programming Plone - The MySite Tutorial

53

Testing

Why testing?

(explain the rationale and give reference to general introductions on testing) - Put in less bugs -- a bug is test not yet
written

When writing tests first you get feedback on your code as early as possible so you can evaluate your code while writing
it. This almost inevitably results in better code.

 • Increase confidence in your code -- from the onset you know whether your code works as expected or where it
fails.

 • Easier maintenance -- It allows refactoring code at a later time and make sure the module still works correctly.
This provides the benefit of encouraging programmers to make changes to the code since it is easy to check if the
piece is still working properly.

 • Enable collaboration -- When working on code originally written by others you will notice immediately should you
break something. This is an almost must have feature in the distributed open source development projects.

 • Key ingredient in modern development paradgims like Test Driven Development (TTD), Extreme Programming
(XP) and other Agile approaches.

Digression: Test-Driven Development (TDD)

Quoting Kent Beck innerlink 1 : The "rhythm" of TDD can be summed up as follows:

1. Quickly add a test.

2. Run all tests and see the new one fail.

3. Make a little change.

4. Run all tests and see them all succeed.

5. Refactor to remove duplication.

The surprises are likely to include:

 • How each test can cover a small increment of functionality

 • How small and ugly the changes can be to make the new tests run

 • How often the tests are run

 • How many teensy-weensy steps make up the refactorings

Testing what?

Programming Plone - The MySite Tutorial

54

Unit tests

 • Test individual classes.

 • Test everything that can possibly break.

 • Ideally, they are written in parallel with (or even before) the class by the programmer, i.e, they are programmer
tests.

 • They are kept and shipped with the code.

Integration tests

 • Assure that individual units work together.

 • They are slightly above unit tests because they test interactions between objects.

 • They should be written by the author of a newly integrated class

 • They often use the same framework as unit tests for implementation.

 • They are kept and shipped with the code.

Regression tests

 • Make sure a software program still does what it used to do.

 • Today's unit tests are tomorrow's regression tests (as for integration and functional tests)

 • They are often written according to the "feature list".

 • If a software has no unit tests yet, writing regression tests is a way to raise confidence in the code.

 • They are also kept and shipped with the code.

Functional tests

 • Test the software from a users point of view.

 • Sometimes even written by users or customers and therefore also referred to as customer tests.

 • Also considered acceptance tests.

 • Take a black box approach and may therefore use even a different platform.

 • May also be shipped with the code.

How to do it in general

Programming Plone - The MySite Tutorial

55

 XUnit

Originally designed for SmallTalk by Kent Beck and later generalized. Key concepts are:

Test Case — tests a single scenario

Test Fixture — preparations needed to run a test

Test Suite — aggregation of multiple test cases

Test Runner — runs a test suite and presents the results

Implementations

There are implementations of XUnit for all major plattforms and languages like JUnit for Java, PyUnit for Python,
CppUnit and Unit++ for C++, PerlUnit for Perl etc.

DocTesting

Originally introduced by Jim Fulton into the Zope 3 development process it is now creaping into the Python world.

Taking the documentation aspects of testing more serious by incorporating the tests into the doc strings of the
methods and classes right away (exploiting a specific Python feature) and allowing them to be human-readable.

Running Zope's unit tests

(quoting Lennart Regebro's contribution at http://zopewiki.org/HowToRunZopeUnitTests)

Use Zope 2.7.3 or later

The hardest thing about Zope unit tests was, and sometimes still is, running them. It can be a terrifying black art.

In Zope 2.6 and earlier, you had a test runner for products in lib/python/Products , another for CMF products
and you needed a third-party patch for those in the standard Products-directory. Zope 2.7.0 introduced a new test
runner, test.py but retained the old without deprecation warnings, and introduced more obscure bugs, making this even
more confusing and terrifying. But slowly during the life of Zope 2.7 things have become better. See the troubleshooting
section below if you get stuck.

So, use Zope 2.7.3 or even better, 2.7.4. You can use the test.py from latest Zope with earlier versions of Zope 2.7 but
you will need to know what you are doing. Earlier versions of test.py aren't useful at all. Testing a product

Usually you want to run unit tests for one or more products. The basic command is:

zopectl test

This will run all unit tests in your Products directory. zopectl is found in 'INSTANCE_HOME/bin'; it runs the
bin/test.py testrunner, but adds some useful defaults:

-v increases verbosity. You can add -vv for even more output.
--config-file etc/zope.conf reads in the Zope configuration file,so that important paths are set up.
--libdir Products tells test.py to include Products as a module path and to include the tests there.

NB if you have several zope instances, you must use the zopectl from the instance where your product is.

Programming Plone - The MySite Tutorial

56

zopectl doesn't run on windows, so there you need to spell it out:

c:\path\to\python.exe bin\test.py -vC etc\zope.conf --libdir Products

Perhaps it's simpler after all to make sure SOFTWARE_HOME/bin/test.py is in your path and just do:

cd myproductdir; test.py --libdir . -v

To see the rest of the command options you can run it with '--help':

zopectl test --help

Quite often you don't want to run all the tests in Products, it takes too long time. You can limit the search for tests to a
specific directory, with the --dir parameter:

zopectl test --dir Products/CMFCore/tests/

You can also add different filter statements to the command, to specify it even further. This command will run only test
in the testCookieCrumbler.py file:

zopectl test --dir Products/CMFCore/tests/ testCookieCrumbler.py

And this will run only the test called testCookieLogin , in the testCookieCrumbler.py file:

zopectl test --dir Products/CMFCore/tests/ testCookieCrumbler.py testCookieLogin

The test output should look something like this:

Running unit tests at level 1
Running unit tests from /home/regebro/Zopes/Zope-trunk/Products/CMFCore/tests
Parsing /home/regebro/Zopes/Zope-trunk/etc/zope.conf
.....................
--
Ran 21 tests in 0.130s

OK

Testing Zope

If you want to run the unit tests for Zope itself, then libdir should be set to 'SOFTWARE_HOME/lib/python':

zopectl test --libdir SOFTWARE_HOME/lib/python

or:

python test.py -vC etc/zope.conf

They do the same thing.

ZopeTestCase

(explain where to obtain and how to install ZopeTestCase and illlustrate the different fixtures: PloneTestCase ,
ArchetypesTestCase , etc.)

Providing unit tests for your product

(develop tests for MySite)

Writing functional tests

Programming Plone - The MySite Tutorial

57

(if only I knew how. Probably better to ask someone else to write this)

Writing doc tests

(same as with functional tests)

References

A lot of material presented here was - in part literally - taken from Stefan Holek's ZopeTestCase Wiki. Thanks Stefan!

In addition to the links already included, I can recommend:

1] Kent Beck: Test-Driven Development by Example (Addison-Wesley, 2003)

Some Python specific links:

 • Python's unittest module

 • The PyUnit website

 • Mark Pilgrim: Dive into Python

Programming Plone - The MySite Tutorial

58

Debugging Plone

When developing for Plone you often need to know more about that is going on when your code gets executed, why
errors arise, what values specific variables have, whether certain conditions are met, etc.

To this end, there are various ways in which you can make Zope and Plone be more informative about what is going
on. Some of these techniques will be explained here, starting with the easiest but least powerful (printing to the
browser) and working through more sophisticated methods all the way to interactive Python debugger sessions.

Printing to the browser

If all you need is some knowledge about, e.g., the result of a specific function call or the value of a certain variable it is
often sufficient to write a (TTW) Python script which prints the information you need and returns it to the browser.
Example: Make a Script (Python) object called myContentItems with the following body:

id = context.getId()
items = context.contentItems()

print "%s's content items:"% id
for k,v in items:
 print "%s/%s (%s)" % (id, k, v)

try:
 id = context.aq_parent.getId()
 items = context.aq_parent.contentItems()
 print "\n%s's content items:"% id
 for k,v in items:
 print "%s/%s (%s)" % (id, k, v)
except AttributeError: # Zope root has no 'contentItems'
 pass

return printed

Convince yourself that you can now call this anywhere within your site by adding it to the URL of an object in your
browser. So anything like http://<your_zope_server>/MySite/Events/myContentItems should work
(replace MySite with your site's id of course). Note, how the result differs depending on whether you call it on a
folderish or non-folderish item. For non-folderish items contentItems gets acquired from the parent folder yielding
somewhat unexpected results. In essence, all you need to realize is how to actually use print in TTW code.

Printing to the console

Printing to the console is even easier as any print statement that you include in your product's code (or Plone's or
CMF's or Zope's for that matter) prints to the console as soon as you run Zope in non-daemon mode, i.e., without
detaching from the shell. To obtain the latter, start your Zope by using runzope instead of zopectl [re]start
and you are done. But don't do this on a production server. Use a development site as using runzope also puts it in
debug mode which will slow down Zope considerably (XXX: check whether that's actually true).

Logging

If you don't want to run in debug mode but still need to output status messages or any other kind of information you can
use Zope's logging facilities. There are actually several ones (e.g., Plone provides its own) but the most convenient one
is usually zLOG .

To illustrate its usage, here an example from the membership tool's wrapUser method. This particular example only
works for file-system code as importing ERROR is not allowed in TTW code (but see below for your TTW logging

Programming Plone - The MySite Tutorial

59

options)::

from zLOG import LOG, ERROR
import sys
LOG('CMFCore.MembershipTool',
 ERROR,
 'Error during wrapUser',
 error=sys.exc_info(),
)

The logger takes three positional arguments: the subsystem issuing the statement, the severity level (here ERROR but
this could alternatively be TRACE , DEBUG , BLATHER , INFO , PROBLEM , WARNING or PANIC), and a short
description. Optional arguments are detail to provide a more detailed description or error to pass in a Python
error handling object. See ZOPE_HOME/lib/python/zLOG/__init__.py for more.

The result of the logging statement will be added to the event.log file located in the INSTANCE_HOME/log
directory. Whatch it using, e.g.:

tail -n 20 -f event.log

on a Unix-like system (show the last 20 lines of event.log and follow up on changes).

In TTW code you are not allowed to import the more severe security levels as raising them might trigger further actions
but the purely informative ones are fine.

If you just want to provide some logging information in form of a plain string, Plone provides for convenience a
plone_log method. It can be acquired from anywhere within the site and it takes one string as an argument. Use it
like:

'context.plone_log(<some message>)'

from within a TTW Python script. It passes the message along to zLOG's logger with the subsystem set to Plone
Debug and the severity to INFO .

Don't confuse the above with transaction notes. Transaction notes are comments on individual transactions in the
ZODB. In Zope, you define a note on a transaction by calling:

get_transaction.note(<message>)

Plone wraps this call to make it available to TTW code. You can use it in Python scripts like:

from Products.CMFPlone import transaction_note
transaction_note(<message>)

Transaction notes do not end up in the event.log file but they are written to the ZODB. They may show up in the
user interface to the undo action or provide guidance when debugging the ZODB.

Up to now we have dealt with getting at very specific, predefined information at runtime which is usually not really
considered debugging your code though it may help in doing so. Now we will see how to get into real debugging
sessions.

Using zopectl debug

Starting with the Zope 2.7 series, there is zopectl - at least for Linux/Unix users - which also supports the command
line argument debug . It will launch an interactive Python session with your Zope root bound to app . Make sure your
Zope site is shut down first (unless you are using ZEO; more on that below) or zopectl will complain with an
IOError because it will be unable to lock the database file. A transcript of a debugging session follows to illustrate
some of your options. I (ab)use this here also to illustrate some of the internals of Archetypes. For the session

Programming Plone - The MySite Tutorial

60

presented here I used Archetypes-1.3.1-RC3. Do not expect the later parts to be identical on your site if you repeat this
session using an older Archetypes version. Comments are added inbetween to explain what is going on.

Note to Windows users: As far as I can tell (AFAICT), zopectl does not work under Windows not even using
cygwin. While part of its functionality is implemented by the Plone Controller , the debug option is not. Or as
Duncan Booth explained this on the plone-devel mailing list (zdctl is the Zope daemon controller which is called by
zopectl):

zdctl communicates with the running Zope instance through
a unix socket and unfortunately the AF_UNIX protocol is not
supported on Windows. I think that to get any zopectl
functionality on Windows you would have to modify zdctl to
support AT_INET as well as AF_UNIX. There are programs such
as 'Plone Controller' which provide similar functions to parts
of zopectl, but not the debugging.

The only way I know of to obtain this functionality under Windows is to buy an add-on like the Enterprise Server from
Enfold Systems where this feature is included among others. (Note to the note: It is the absolute exception that I
mention a particular product and company here as Enfold Systems is not just some company but led by Alan Runyan
and Andy McKay - two of the godfathers of Plone.)

But let's get started now. First, you see the directory where zopectl lives on my development server (in general this
is $INSTANCE_HOME/bin):

[ritz@pitts bin]$ pwd
/extra2/Zope-2.7.3-0/bin

Start zopectl debug and you will see the standard startup message telling you the name of your Zope root object:

[ritz@pitts bin]$ zopectl debug
Starting debugger (the name "app" is bound to the top-level Zope object)

Note: In case you wonder whether it is save to do this with an existing site that you still need for other purposes: You
cannot do any damage to your site (it's a development site anyway, isn't it) as long as you don't commit your changes
explicitly. More on that below.

Let's see what Zope objects we find in app . Compare these with what you see in the ZMI when you are at Zope root
level. In addition to a fresh Zope site, I have two Plone instances here: one called Plone , a native Plone site, and one
called MySite , a Plone site where the MySite product has been installed and where the sample content has been
uploaded:

>>> for id, ref in app.objectItems():
... print "%-25s: %s"% (id, repr(ref))
...
acl_users : <UserFolder instance at b6cf1860>
Control_Panel : <ApplicationManager instance at b6cf90e0>
temp_folder : <SimpleTemporaryContainer instance at b6cf9620>
session_data_manager : <SessionDataManager instance at b6cf13e0>
browser_id_manager : <BrowserIdManager instance at b6cdf8f0>
error_log : <SiteErrorLog at /error_log>
standard_error_message : <DTMLMethod instance at b6cf9230>
standard_template.pt : <ZopePageTemplate at /standard_template.pt>
standard_html_header : <DTMLMethod instance at b6cf92c0>
standard_html_footer : <DTMLMethod instance at b6cd14d0>
index_html : <DTMLMethod instance at b6cf9050>
Plone : <PloneSite instance at b6cf9260>
MySite : <PloneSite instance at b6cdf830>

And here you see the ids of all Zope objects in 'MySite':

>>> app.MySite.objectIds()
['portal_actions', 'portal_catalog', 'portal_memberdata', 'portal_skins',
'portal_types', 'portal_undo', 'portal_url', 'portal_workflow',

Programming Plone - The MySite Tutorial

61

'portal_discussion', 'portal_registration', 'portal_properties',
'portal_metadata', 'portal_syndication', 'plone_utils',
'portal_navigation', 'portal_factory', 'portal_form', 'portal_migration',
'portal_actionicons', 'portal_calendar', 'portal_quickinstaller',
'portal_groups', 'portal_groupdata', 'MailHost', 'cookie_authentication',
'content_type_registry', 'Members', 'index_html', 'acl_users',
'HTTPCache', 'RAMCache', 'caching_policy_manager', 'portal_interface',
'portal_controlpanel', 'portal_form_controller', 'error_log',
'mimetypes_registry', 'portal_transforms', 'archetype_tool',
'uid_catalog', 'reference_catalog', 'portal_membership', 'my_tool',
'events', 'Events']

To show only objects that have a portal_type assigned, we can use contentItems() :

>>> for k,v in app.MySite.contentItems():
... print "%-11s: %s"%(k,repr(v))
...
Members : <LargePloneFolder instance at b6800260>
index_html : <Document at /MySite/index_html>
events : <FlexibleTopic instance at b6800da0>
Events : <PloneFolder instance at b6800aa0>

>>> app.MySite.Events.contentIds()
['plone_conf', 'euro_python']

Note how contentItems() and contentIds() filters out all non-portal-typish objects. But you can do much more
than just looking at ids and object references. First, let's define a local object reference for easier access:

>>> plone_conf = app.MySite.Events.plone_conf

Next, you will see the local namespace of the specific event instance. These are all attributes and methods intrinsic to
the particular object instance (but not the inherited or acquired ones - some of the formating below I did by hand when
editing the text source).:

>>> for k,v in plone_conf.__dict__.items():
... print "%-20s: %s"% (k,repr(v))
...
event_url : 'http://plone.org/events/conferences/2'
event_type : u'Conference'
_signature : 'W\xd1\x96\x0b\x01\xbd\xd2\xb6\x98\xf99\x92\x0b\x8c\x14\x0e'
creation_date : DateTime('2004/11/09 13:05:43.803 GMT+1')
marshall_hook : None
registration : <Deadline at registration>
_Access_contents_information_Permission: ['Anonymous', 'Manager']
event_location : {'city': 'Vienna', 'country': 'Austria'}
id : 'plone_conf'
modification_date : DateTime('2004/11/09 13:05:43.856 GMT+1')
title : u'Plone Conference'
demarshall_hook : None
workflow_history : {'compound_workflow': (
 {'action': None,
 'review_state': 'visible',
 'actor': 'ritz',
 'comments': '',
 'time': DateTime('2004/11/09 13:05:43.819 GMT+1')},
 {'action': 'publish',
 'review_state': 'published',
 'actor': 'ritz',
 'comments': '',
 'time': DateTime('2004/11/09 13:05:43.954 GMT+1')})}
_Change_portal_events_Permission: ('Manager',)
_objects : ({'meta_type': 'Deadline', 'id': 'registration'},)
start_date : DateTime('2004/11/19 13:05:43.738 GMT+1')
end_date : DateTime('2004/11/21 13:05:43.738 GMT+1')
portal_type : 'Event'
_at_uid : 'f21a9f93784f71f437aad76306a12ac9'
at_references : <Folder instance at b680c050>
_Modify_portal_content_Permission: ('Manager',)
_View_Permission : ['Anonymous', 'Manager']

Programming Plone - The MySite Tutorial

62

talkback : <DiscussionItemContainer instance at b680c0b0>
contact : {'phone': '+43 2741 7054',
 'fax': '+43 2741 7054 30',
 'address': ['BlueDynamics KEG', 'Goldegg 2', 'A-3110 Neidling'],
 'email': 'ploneconf@bluedynamics.com',
 'name': 'BlueDynamics'}
_md : {'contributors': (),
 'language': u'en',
 'rights': <BaseUnit instance at b67f5980>,
 'subject': (),
 'effectiveDate': None,
 'expirationDate': None,
 'allowDiscussion': None,
 'creators': (),
 'description': <BaseUnit instance at b67f5aa0>}
__ac_local_roles__ : {'ritz': ['Owner']}

This is by the way also the information that is saved in the database for this event. Most of these entries should be
familiar to you but some may not. You can learn a lot about Zope/CMF/Plone/Archetypes by just inspecting objects in
this way.

Also, by paying attention to the detailed data structure, you can learn more about what to expect when calling an
accessor for a particular attribute and how to handle its result (see in particular the workflow_history for a more
complex example).

But this is not the end of the game yet. If you really want to see more of the object's namespace you can use Python's
dir(...) function to add all attribute and method names that the object obtained via its parent class and through
inheritance. I will not display the full result here because it is way to long but just illustrate it:

>>> len(dir(plone_conf))
800
>>> dir_list = dir(plone_conf)
>>> for i in range(0,len(dir_list)-2, 3):
... print "%-20s\t%-20s\t%-20s" % \
... (dir_list[i],dir_list[i+1],dir_list[i+2])
...
COPY COPY__roles__ Contributors
Contributors__roles__ CreationDate CreationDate__roles__
Creator Creator__roles__ Creators
Creators__roles__ DELETE DELETE__roles__
Date Date__roles__ Description
Description__roles__ EffectiveDate EffectiveDate__roles__
Epoz EpozGetRelativeUrl EpozTidy
EventTypes ExpirationDate ExpirationDate__roles__
Format Format__roles__ HEAD
HEAD__roles__ Identifer Identifier
Identifier__roles__ LOCK LOCK__roles__
...

It is highly recommended to take a look at the full list though.

Let's dig deeper now into the internals of Archetypes and look at the schema next (some of the formatting below I did
by hand):

>>> for k,v in plone_conf.Schema().__dict__.items():
... print "%-10s: %s\n" % (k,v)
...
__name__ : default

_fields : {'event_url': <Field event_url(url:rw)>,
 'end_date': <Field end_date(datetime:rw)>,
 'description': <Field description(text:rw)>,
 'contributors': <Field contributors(lines:rw)>,
 'title': <Field title(string:rw)>,
 'language': <Field language(string:rw)>,
 'start_date': <Field start_date(datetime:rw)>,

Programming Plone - The MySite Tutorial

63

 'rights': <Field rights(text:rw)>,
 'modification_date': <Field modification_date(datetime:rw)>,
 'event_type': <Field event_type(string:rw)>,
 'creation_date': <Field creation_date(datetime:rw)>,
 'deadlines': <Field deadlines(computed:r)>,
 'effectiveDate': <Field effectiveDate(datetime:rw)>,
 'contact': <Field contact(contact:rw)>,
 'expirationDate': <Field expirationDate(datetime:rw)>,
 'allowDiscussion': <Field allowDiscussion(string:rw)>,
 'creators': <Field creators(lines:rw)>,
 'event_location': <Field event_location(location:rw)>,
 'id': <Field id(string:rw)>,
 'subject': <Field subject(lines:rw)>}

_names : ['id', 'title', 'allowDiscussion', 'subject', 'description',
 'contributors', 'creators', 'effectiveDate', 'expirationDate',
 'language', 'rights', 'creation_date', 'modification_date',
 'event_type', 'start_date', 'end_date', 'event_location',
 'event_url', 'contact', 'deadlines']

_props : {'marshall': <Products.Archetypes.Marshall.RFC822Marshaller
 instance at 0xb72b086c>}

_layers : {'marshall': <Products.Archetypes.Marshall.RFC822Marshaller
 instance at 0xb72b086c>}

In the _fields dictionary above you see references to the individual field objects. Let's look at the title field in more
detail:

>>> plone_conf.Schema()['title']
<Field title(string:rw)>
>>> for k,v in plone_conf.Schema()['title'].__dict__.items():
... print "%-15s: %s" % (k,v)
...
widget : <StringWidget instance at b77a99b0>
generateMode : veVc
read_permission: View
searchable : 1
enforceVocabulary: False
mutator : setTitle
validators : ()
__name__ : title
accessor : Title
edit_accessor : getRawTitle
index : None
default_content_type: text/plain
isMetadata : False
default :
_layers : {'storage': <Storage AttributeStorage>}
required : 1
storage : <Storage AttributeStorage>
write_permission: Modify portal content
index_method : _at_accessor
languageIndependent: False
schemata : default
multiValued : False
default_method : None
vocabulary : ()
force :
type : string
mode : rw

Note that nowhere in the schema or in the field itself we find the actual value of the title whereas in the event instance's
dictionary we can clearly see it. The latter is simply due to the fact that the title field uses AttributeStorage which
means that the value itself is stored as an attribute on the instance. This allows for a clean separation of the instance,
the schema, the fields, and the actual values. This can be further illustrated by the way in which you can get the actual
value back given the field. Just look at this:

>>> plone_conf.Schema()['title'].getAccessor(plone_conf)

Programming Plone - The MySite Tutorial

64

<bound method Event.Title of <Event instance at b67f3d40>>

>>> plone_conf.Schema()['title'].getAccessor(plone_conf)()
'Plone Conference'

Note that getAccessor needs the event instance (plone_conf) to be passed in to re-establish the connection
between the field and the instance. Calling this accessor then finally returns the actual value.

So much for introspection (and a somewhat lenthy digression into the internals of Archetypes). But what is really cool is
that you can also manipulate objects from the Python prompt directly:

>>> plone_conf.Title()
'Plone Conference'

>>> plone_conf.setTitle('Second Plone Conference')

>>> plone_conf.Title()
'Second Plone Conference'

You can even do the forbidden thing and change attributes directly (it's just Python after all) without calling their
accessors. This should, of course, only be done if you need to change attributes for which there is no accessor
available to avoid unnecessary side effects:

>>> plone_conf.title = 'Next Plone Conference'

>>> plone_conf.Title()
'Next Plone Conference'

Don't be shy in checking things out this way. As stated above, you cannot do much damage to your site as long as you
don't commit your changes explicitly. That means, you can leave a debugging session at any time using Ctrl-D (the
Python way to quit an interactive session) and your site will be as before no matter what you have changed
interactively. <!-- % Anonymous User - Nov. 17, 2004 9:36 pm: You may want to state this as a NOTE: up in the
begining when you start the zopectrl debug session. -->

If, on the other hand, you want your changes to be made persistent (e.g., because you fixed a broken instance) you
need to tell the ZODB to keep your changes by calling:

get_transaction().commit()

Be aware that this writes ALL changes that you did up to this call into the ZODB. If you called this in error you can still
use the undo facilities of the ZODB. If the site can be restarted, this can even be done later TTW via the undo tab in
ZMI.

Using Python's debugger (pdb) with emacs

Probably the most convenient and advanced way to develop and debug Plone is to use an IDE (an Integrated
Development Environment). While there are a few IDEs around (commercial as well as freely available ones), I
personally never felt the need to get one. As of now, I never used more than emacs (including its Python mode) and
Python's debugger pdb .

To get started, you need to know how to set a break point , i.e., how to tell Python to stop at a certain point in the
processing chain. To do so, edit the function or method that you want to debug to include the following line at the point
where you want Python to take a break:

import pdb; pdb.set_trace()

Now comes the trick: Restart the server from a shell within emacs using runzope . Use a browser to go to a page or
action that evokes the method containing the break point. Return to your emacs session and observe that there are
now two windows: the shell where you started Zope became an interactive pdb session and the second window

Programming Plone - The MySite Tutorial

65

shows you the source code with the cursor at the point where the process is currently at.

Now use whatever pdb command you like, e.g., n (ext): execute the next command, s (tep): step into the next
command called, u (p): move up the execution stack, d (own): move down the stack, p (rint), etc. Use h (elp) to learn
more about your options and see http://docs.python.org/lib/module-pdb.html for an overview of pdb and
http://docs.python.org/lib/debugger-commands.html for the commands available in pdb .

Note how the content in the source code window changes as you step through the code. That way you can always see
immediately where and how the current method is actually defined.

Last but not least, note that everything you type in at a pdb prompt that cannot be interpreted by pdb itself is treated
as a regular Python expression.

To terminate a pdb session type q (uit). Don't worry about the BdbQuit error that comes up in the browser. Your site
is fully functional until you hit the breakpoint again.

You can get emacs even closer to a real IDE by combining it with Bicycle Repair Man (see
http://c2.com/cgi-bin/wiki?BicycleRepairMan for more).

(Thanks to Jim Fulton for sharing this knowledge with Thomas Förster who in turn passed this on to me.)

Using ZEO

Zope Enterprise Objects (or ZEO for short) provides access to one ZODB for several clients. Its main usage is to
improve site performance by enabling several computers to act as webservers in parallel for one Zope site - all sharing
the same data.

But ZEO is also useful for debugging a live site because it allows you to connect a debugging session as outlined
above to a running site. No need to shut it down anymore. All you need is a ZEO setting with at least two Zope
instances as clients. All but one are serving your site as usual while you can use the remaining client for debugging.

See also:

 • Setting up and using ZEO in general: http://www.plope.com/Books/2_7Edition/ZEO.stx

 • Ken Manheimer's wiki on Zope debugging at zope.org: http://zope.org/Members/klm/ZopeDebugging/FrontPage

 • Ken's original paper on the matter: http://zope.org/Members/klm/ZopeDebugging/ConversingWithZope

 • A more advanced coverage of the matter at zopewiki.org:
http://zopewiki.org/DebuggingZopeWithPythonDebugger2

Programming Plone - The MySite Tutorial

66

Conclusions

(still to be written)

What did we cover

What didn't we cover (templating, Zope 3, Five)

Where to go from here

Take-home message

Programming Plone - The MySite Tutorial

67

Solution Proposals for the Exercises

1] Fundamental Background - Object Orientation

See any modern textbook on programming or read the respective chapter from the Zope book (
http://zope.org/Documentation/Books/ZopeBook/2_6Edition/ObjectOrientation.stx)

In a nutshell, an object is a programmatic representation of some real-world or conceptual entity. A class then is a
template that formalizes and implements the object's definition in order to serve as a machine to generate instances of
those objects by calling its constructor (in Python, this is the class's __init__ method).

Classes are typically equipped with attributes (Variables) and methods (functions applicable to instances of this class)
and so are the instances generated from the class. When adding or changing attributes or methods you can either do
that for the entire class (by changing its definition) or for an individual instance. The latter is what you typically do when
working TTW with Plone, the former when writing your custom tools and types.

Properties are in the abstract sense managed attributes. This means that there are dedicated methods for accessing
(hence the term accessor) and for changing the value of an attribute (the mutator).

Quoting from http://docs.python.org/lib/built-in-funcs.html:

getattr(object, name[, default]) Return the value of the named attribute of object. name must be a string. If the string
is the name of one of the object's attributes, the result is the value of that attribute. For example, getattr(x, foobar) is
equivalent to x.foobar. If the named attribute does not exist, default is returned if provided, otherwise AttributeError is
raised.

hasattr(object, name) The arguments are an object and a string. The result is 1 if the string is the name of one of the
object's attributes, 0 if not. (This is implemented by calling getattr(object, name) and seeing whether it raises an
exception or not.)

setattr(object, name, value) This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For example, setattr(x, foobar , 123) is equivalent to x.foobar = 123.

2] Python Background - Collection Types

In abstract terms, any number of instances of some type is sometimes referred to as a collection . A collection may be
ordered or not. If so, it is called a sequence . Otherwise it is just a set . If the elements from the collection can be
uniquely accessed via some key , it is called a mapping .

In Python there are currently six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects but
there is only one built-in mapping type: the dictionary.

For an illustration of slicing , see examples 3.8 and 3.9 from http://diveintopython.org/native_data_types/lists.html

The major difference between a list and a tuple is that lists are mutable whereas tuples are not. With other words,
a tuple is an immutable list. A tuple can not be changed in any way once it is created. This is why you should generally
use tuples in a multi-threaded application like Zope whenever possible and why you should NEVER iterate over a list
that you want to change within the loop. If you need to do this, make a copy of this list beforehand (copy_of_mylist
= mylist[:]).

Programming Plone - The MySite Tutorial

68

For a complete overview over the types available in Python see http://docs.python.org/lib/types.html

3] Fundamental Background - Name Space

In a nutshell, a name space is just a collection of terms understood by a programm at runtime. It is useful to distinguish
between unqualified names (e.g., x = 1 makes x a local, unqualified name) and qualified names (e.g., object.x
= 1 puts x in the name space of object , so to access x later again, you need to qualify x via object , i.e., use
object.x for access).

Unqualified names follow the local-global-builtin, or LGB, rule meaning a name is first looked up locally, then globally
and finally among the (Python) built-ins.

Qualified names are looked up by Python in the qualified object's name space. First, the object instance itself is
checked for the name, next, the class the object is an instance of is searched and finally the superclasses are looked
up (if there are any).

Zope extends the name space for objects that "live" in the ZODB through acquisition and CMF via skinning (which is
also based on acquisition).

See http://www.python.org/dev/doc/devel/ref/naming.html for more on Python's naming and binding or
http://www.neuroinf.de/PloneDevTutorial/big_picture#1-4 for a slightly more detailed account on Zope/CMF/Plone's
name space handling.

4] Zope Background - PropertyManager

Quoting from '.../yourZope/lib/python/OFS/PropertyManager.py':

The PropertyManager mixin class provides an object with transparent property management. An object which wants
to have properties should inherit from PropertyManager.

An object may specify that it has one or more predefined properties, by specifying an _properties structure in its class:

_properties=({'id':'title', 'type': 'string', 'mode': 'w'},
 {'id':'color', 'type': 'string', 'mode': 'w'},
)

The _properties structure is a sequence of dictionaries, where each dictionary represents a predefined property. Note
that if a predefined property is defined in the _properties structure, you must provide an attribute with that name in your
class or instance that contains the default value of the predefined property.

Each entry in the _properties structure must have at least an id and a type key. The id key contains the name of
the property, and the type key contains a string representing the object's type. The type string must be one of the
values: float , int , long , string , lines , text , date , tokens , selection , or multiple section
.

For selection and multiple selection properties, there is an addition item in the property dictionay,
select_variable which provides the name of a property or method which returns a list of strings from which the
selection(s) can be chosen.

Each entry in the _properties structure may optionally provide a mode key, which specifies the mutability of the
property. The mode string, if present, must contain 0 or more characters from the set w , d .

A w present in the mode string indicates that the value of the property may be changed by the user. A d indicates that
the user can delete the property. An empty mode string indicates that the property and its value may be shown in

Programming Plone - The MySite Tutorial

69

property listings, but that it is read-only and may not be deleted.

Entries in the _properties structure which do not have a mode key are assumed to have the mode wd (writeable and
deleteable).

To fully support property management, including the system-provided tabs and user interfaces for working with
properties, an object which inherits from PropertyManager should include the following entry in its manage_options
structure:

{'label':'Properties', 'action':'manage_propertiesForm',}

to ensure that a Properties tab is displayed in its management interface. Objects that inherit from PropertyManager
should also include the following entry in its __ac_permissions__ structure:

('Manage properties', ('manage_addProperty',
 'manage_editProperties',
 'manage_delProperties',
 'manage_changeProperties',)),

So far for the quote. Note that all portal content inherits from PropertyManager . Further note that defining security
the way in which it is described here is deprecated. Today, we should use declarative security assertions instead as
described in the main section for MyTool . Again, see http://zope.org/Documentation/Books/ZDG/current/Security.stx
for more on this central issue.

Now, we turn to setupProperties from Extensions/Install.py as defined here:

def setupProperties(self, out):
 # install my properties
 ptool = getToolByName(self, 'portal_properties')
 psheet = getattr(ptool, 'my_properties', None)
 if not psheet:
 ptool.addPropertySheet('my_properties', 'Properties of my custom site')
 ps = getattr(ptool, 'my_properties')
 ps._properties = ps._properties + (
 {'id':'event_types', 'type':'lines', 'mode':'w'},
 {'id':'deadline_types', 'type':'lines', 'mode':'w'},
)
 ps._updateProperty('event_types', EVENT_TYPES)
 ps._updateProperty('deadline_types', DEADLINE_TYPES)

Here, the private (as indicated by the underscore) _properties attribute and private _updateProperty method
are used as opposed to the correponding public API methods:

manage_addProperty(self, id, value, type, REQUEST=None)

and

manage_changeProperties(self, REQUEST=None, **kw)

so an alternative way to write setupProperties is:

def setupProperties(self, out):
 # install my properties
 ptool = getToolByName(self, 'portal_properties')
 psheet = getattr(ptool, 'my_properties', None)
 if not psheet:
 ptool.addPropertySheet('my_properties', 'Properties of my custom site')
 ps = getattr(ptool, 'my_properties')
 ps.manage_addProperty('event_types', EVENT_TYPES, 'lines')
 ps.manage_addProperty('deadline_types', DEADLINE_TYPES, 'lines')

5] Python Background - Monkey Patching

Programming Plone - The MySite Tutorial

70

For the patch, add the following lines to the __init__.py of MySite :

adding the 'Properties' tab to ZMI for PortalContent
from Products.CMFCore.PortalContent import PortalContent
from OFS.PropertyManager import PropertyManager

manage_options = PortalContent.manage_options +\
 PropertyManager.manage_options

PortalContent.manage_options = manage_options
end of monkey patch

and restart your server. Note, that the properties tab is now also available for non-folderish content objects (per
default, only folderish portal content provides this option).

Next, via ZMI, add a boolean property called displayByline with a value of 1 (True) to the plone root object of your
site. Repeat this for the site's index_html document but with a value of 0 (False).

Finally, customize the document_byline template to include a test on this property to decide whether to display
anything or not. To this end, place:

tal:condition="python:here.getProperty('displayByline')"

into the opening div tag of the template.

Now, whenever the document_byline gets called, the property displayByline will be acquired from the portal
root, unless the item to be displayed or one of its parent folders overrides its value.

6] Zope Background - ZCatalog

Quoting from http://www.neuroinf.de/Miscellaneous/BeginnersGuide:

This is what you need in order to search the database (effectively). For plain Zope you need to build one yourself
whereas CMF/Plone come with a pre-configured portal_catalog . There are some issues that aren't obvious at the
beginning, like indexes, brains, and meta data so I sketch them here.

 • Index : You can query the catalog only on an index and there are several types of indexes supporting different
functionality, e.g., on field indexes you can sort (and do range searches) whereas on text indexes you
can't sort but enable globbing (using wildcards).

 • brains : The catalog does not hold (copies of) the objects indexed themself but rather a reference object to them
called brain or catalog brain in Zope terminology. Brains provide methods like getObject() or
getURL() to get at the respective object or its URL. Furthermore brains can be equiped with

 • catalog meta data to have some attribute values or results of method calls to the object availabel right away
(without having to access the object). It's up to you how many meta data you want (or can afford) to put on your
brains. You basically trade disc space for performance.

For a real intro see http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/SearchingZCatalog.stx

7] CMF Background - Content Generation

CMF's basic method for content generation is invokeFactory . It is originally defined in the PortalFolder class
as defined in the Products/CMFCore/PortalFolder.py module. It gets the type information for the current object
(the one where the new item should go into) from the types tool (portal_types), checks whether the requested

Programming Plone - The MySite Tutorial

71

new content type is allowed to be added to this type of object (note that you can configure this TTW) and if so, the
types tool's constructContent is called. The types tool now checks whether the current user is allowed to add the
new portal content to the current folder and if so, constructInstance from the new content type's type info object is
called. This looks up the registered constructor for the new type, calls it and now the new object is in place.

But there are still a few things left to do: After constructing the new instance constructInstance calls
_finishConstruction (defined in the TypeInformation class of the Products/CMFCore/TypesTool.py
module) to take care to set the portal type (by calling _setPortalTypeName) and to notify the workflow - in case the
new object is subject to one - by calling notifyWorkflowCreated .

Note, that adding portal content via ZMI skips the last part (_finishConstruction) because via ZMI only the
object's constructor is called. That's why you should usually refrain from using the ZMI for the creation of portal content.

Plone's folder (more precisely, BasePloneFolder in Products/CMFPlone/PloneFolder) overrides
invokeFactory to return the id of the newly created object.

Furthermore, Plone wraps the call to invokeFactory by a skin method createObject to provide an
auto-generated id and to optionally buffer object creation by Plone's factory.

portal_factory , an instance of the FactoryTool class as defined in Products/CMFPlone/FactoryTool.py
, provides doCreate . This can be used to buffer the creation of the new object in a temporary folder. This is needed
to offer the user a proper cancelling option while (s)he is editing the newly created object. Without using portal factory
you will end up having empty content objects whenever one of your users adds a new content item without submitting
an edit form for it as well. Note, that you have to turn on this functionality explicitly by indicating the types for which
portal_factory should be used for object creation. To do so, go to portal_factory/Factory Types via ZMI and
select the types you want to enable this functionality for.

Digression - Object Instantiation: As Plone is a high-level application, there are almost always several ways to do the
same thing. This is illustrated here using object instantiation as an example:

1. The Python way: myobbject = MyClass() - calling the class generates an object created by executing
__init__.py

2. The private Zope way - parent is an ObjectManager :

myid = 'foo'
myobject = MyClass()
parent._setObject(myid, myobject)

3. The public Zope way: parent.addMyClass("foo") - calling a Zope-specific constructor

4. An internal CMF way - parent is a PortalFolder (this is useful if you need to bypass the allowed types
checking):

portal_types.constructContent(type_name='MyType', container = parent, id = 'foo')

5. The "official" CMF way: parent.invokeFactory(type_name="MyType", id = "foo")

6. The Plone way: parent.createObject(type_name="MyType", id = "foo") - this is a skin method that is
worth taking a look at!

In general, it is recommended to use the highest possible API level (in terms of abstraction) unless you know that you
don't want some of the services included there or if you need to bypass restrictions. Probably the hardest task when
learning to programm Plone is become aware of the different options offered at the different levels of the framework
and to make correct and consistent use of its API. In order to be able to do so, you should have at least a good

Programming Plone - The MySite Tutorial

72

overview over the different concepts provided by Python, Zope, CMF, Plone, and Archetypes. That is why, in the end, it
is not so easy as it may seem at first glance to become a good Plone programmer. Most importantly, you need to get
practice and - alas- read the source!

8] Fundamental Background - Inheritance

The solution to this problem is given in the look-up section of the Big Picture chapter of this book. (This exercise is here
to bring your attention to this chapter in case you started reading with the main part.)

9] Plone Background - createMemberArea

(still to be written)

10] Archetypes Background - Basic Concepts

(still to be written)

11] CMF Background - Type Registration

Probably the easiest way to achive that our custom event type does not replace the default one but is made available
additionally is to give it a name other than Event , e.g., EventWithDeadlines .

Thanks to the magic of archetypes there is not much you need to do in order to achieve this. First of all, change the
name of the class in Event.py (the module may keep its name) to EventWithDeadlines . Then make sure that
the call to registerType(Event) is changed accordingly to registerType(EventWithDeadlines) .

Finally, there are a number of places in Install.py that you want to adjust:

 • Add EventWithDeadlines to the meta types not to list in the navigation tree in setupProperties .

 • Add it to the content types to be included in the calendar in editCalendarTool .

 • setupCompoundWorkflow should now, of course, set the default chain for the renamed type.

 • The event and no_deadline topics created in setupInitialContent should include the new one in their
criterions on portal_type

12] Archetypes Background - References

(still to be written)

13] CMF Background - Workflow

To make the handling of a deadline's review state not subject to the workflow machinery itself but to leave this for the
parent event we will make three major changes:

1. Remove the deadline types from the types subject to workflow

This can either be done though the web via ZMI under portal_workflow by erasing the (Default) entry for
deadlines under workflow by type or by adding something like::

Programming Plone - The MySite Tutorial

73

wf_tool.setChainForPortalTypes(('Deadline',), '')

in a function similar to setupCompoundWorkflow (which does not need to be called any longer) in the install .

2. Add a method to the Deadline class called review_state to return the parent's state (except for pending):

def review_state(self, default = 'private'):
 """ return the parent's review state except when it is pendig
 return None in this case"""
 my_parent = self.aq_inner.aq_parent
 from Products.CMFCore.utils import getToolByName
 wt = getToolByName(self, 'portal_workflow')
 parent_state = wt.getInfoFor(my_parent, 'review_state')
 if parent_state == 'pending':
 parent_state = default
 return parent_state

3. Override indexObject and reindexObject in the Event class to also (re)index the deadlines:

def indexObject(self):
 """override indexObject from CatalogMultiplex to also update deadlines"""
 # first the default
 BaseFolder.indexObject(self)
 # now the deadlines
 for deadline in self.contentValues('Deadline'):
 deadline.indexObject()

def reindexObject(self, idxs=[]):
 """override reindexObject from CatalogMultiplex to also update deadlines"""
 # first the default
 BaseFolder.reindexObject(self, idxs)
 # now the deadlines
 for deadline in self.contentValues('Deadline'):
 deadline.reindexObject(idxs)

<seqreset id="number">

See http://www.neuroinf.de/epydoc/at-api/public/Archetypes.CatalogMultiplex.CatalogMultiplex-class.html and
http://www.neuroinf.de/epydoc/at-api/public/Products.CMFCore.CMFCatalogAware.CMFCatalogAware-class.html for
the original (re)indexObject methods.

Now, whenever an event is updated and (re)indexed, the event's deadlines will also get (re)indexed. While compiling
the catalog metadata review_state will be called on the deadlines to return the parent's review state except when
the event is pending review.

14] Python Background - Signature

To enable the specification of an optional argument to getDisplayList from the my_utils.py module to specify
the porperty sheet to be used for the look-up of the property value change it to:

def getDisplayList(self, prop_name=None, prop_sheet=None):
 return makeDisplayList(getValues(self, prop_name, prop_sheet))

For this to work, getValues has to be extended to something like:

def getValues(self, prop_name, prop_sheet):
 if not prop_sheet: prop_sheet = 'my_properties' # hard coded default
 ptool = getToolByName(self, 'portal_properties', None)
 if ptool and hasattr(ptool, prop_sheet):
 return getattr(ptool, prop_sheet).getProperty(prop_name, None)
 else:
 return None

(Note: add a digression on named arguments and what **kw is about)

Programming Plone - The MySite Tutorial

74

15] Python Background - Submodules

It may well happen that your product becomes so complex that you would like to structure the package by grouping
modules into subfolders (like moving MySite's Deadline.py and Event.py into a subfolder MyContentTypes).

Now, in order to support statements like:

from Products.MySite.MyContentTypes.Deadline import Deadline

MyContentTypes has to be a Python product or package itself. But a folder in the file system is not per default
considered a package by Python. On start-up, Python looks through every folder in a package for a file called
__init__.py and if it findes one the folder is considered a package (and the content of __init__.py gets
executed if there is any). So to tell Python that your folder should be recognized as a package it is sufficient to place an
__init__.py file in there, even if it is empty.

Now consider what happens if such an empty __init__.py file gets lost on distributing your product. Your subfolder
will not be treated as a package anymore, statements like the import above will fail (raise an ImportError) and
your product will be broken. So to be on the safe side, place at least some dummy content in there.

16] Optimization - Search Template

The custom (advanced) search template differs from Plone's original template in one single expression: Where the
original template gets the types to offer in the form from the types tool directly by calling:

<tal:contenttypes repeat="type python:portal_types.listContentTypes()">

MySite's custom template gets this list from calling:

<tal:contenttypes repeat="type here/getSearchableTypes">

a custom script from the my_scripts skin folder which in turn starts out with the same list:

types = context.portal_types.listContentTypes()

but then only returns it after removing all entries listed in:

types_to_exclude = context.getNotSearchableTypes()

This demonstrates a combined white list/black list approach, meaning there is a positive or white list of all types that
should possibly be considered here and a negative or black list containing all types that should definitively not be
considered.

At first glance this may seem redundant but realize that the white list is generated dynamically (all types known to the
types tool at runtime) whereas the black list is static (but customizable). Anytime you register a new content type for
your site it will appear in the list returned by the types tool and therefore among the content types offered for searching.
If this is not what you want you have to manually include it in the blacklist but the default behavior is probably what you
want in most cases.

Note, that the list of content types offered for addition to a folder are determined in the same way by calling
getAddableTypes which filders then on getNotAddableTypes .

Using a script like getNotSearchableTypes to just return a static list may seem ackward. A static list should
possibly be managed using a property instead. To this end, add a property to
portal_properties.my_properties . You can do this either through-the-web or from MySite's install by
adding:

Programming Plone - The MySite Tutorial

75

ps.manage_addProperty('not_searchable_types', NOT_SEARCHABLE_TYPES, 'lines')

to setupProperties after defining NOT_SEARCHABLE_TYPES in the config file. Then change the second line in
getSearchableTypes to:

types_to_exclude = context.portal_properties.my_properties.getProperty('not_searchable_types', [])

and you are done. Alternatively, the property could be added to the portal root object itself, then access would be
easier thanks to acquisition:

types_to_exclude = context.getProperty('not_searchable_types', [])

and we gain the possiblity to override the list's value from within any subfolder of the site. For the definition of
searchable types this may seem like YAGNI (you ain't gonna need it) but for defining the not-addable types this should
be the way to go (and maybe Plone will do it that way in the future).

17] List Comprehension

No implementations in other languages have been submitted up to now. Send me one and I will include it here together
with your name (or not; as you like).

Programming Plone - The MySite Tutorial

76

Major Python/Zope/CMF/Plone/Archetypes resources

Python: http://www.python.org

Zope: http://www.zope.org (the community) and http://www.zope.com (Zope Corporation)

Zope's Content Management Framework (CMF) http://cmf.zope.org

Plone, an advanced front end to the CMF at http://plone.org

Archetypes, which enables easy creation of custom content types for CMF and Plone (
http://sourceforge.net/projects/archetypes)

Documentation

Python

 • the definitive reference: http://www.python.org/doc/

 • to get started (for otherwise experienced programmers): http://diveintopython.org/

 • to get started from scratch: How to think like a computer scientist http://www.ibiblio.org/obp/thinkCSpy/

Zope

 • The Zope Book (2.6 edition): http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition

 • The Zope Book (2.7 edition; forthcoming) http://www.plope.com/Books/2_7Edition

 • Zope Developers Guide: http://www.zope.org/Documentation/Books/ZDG

 • Zope Cookbook at http://www.zopelabs.com

 • Dieter Maurer's upcoming(?) Building Dynamic Web Sites with Zope :
http://www.dieter.handshake.de/pyprojects/zope/

CMF

Unfortunately there is no comprehensive book on the CMF available up to now but there are bits and pieces on various
topics. And there is some documentation that ships with the distribution and that's available through the Help section of
the management interface.

Plone

 • The documentation section on plone.org (http://plone.org/documentation) and there in particular the book and
the how-tos:

 • The book of Plone (this is for Plone 1): http://plone.org/documentation/book/

Programming Plone - The MySite Tutorial

77

 • Andy McKay: The Definitive Guide to Plone (this is for Plone 2): http://plone.org/books/definitive_guide

Some chapters from the book are available in electronic form from
http://cvs.sourceforge.net/viewcvs.py/plone-docs/PloneBook/

 • Plone HowTos: http://plone.org/documentation/howto

 • The plone-docs project at sourceforge in general: http://cvs.sourceforge.net/viewcvs.py/plone-docs/

Archetypes

 • Entry page to various documents: http://plone.org/documentation/archetypes

More Specific Tools for Finding or Generating Documentation

or how to effectively search for something related to your problem:

Full-text Searchable Mailing List Archives

 • at gmane as linked from plone.org: http://plone.org/documentation/lists

 • at active state: http://aspn.activestate.com/ASPN/Mail

 • at New Information Paradigms Ltd.: http://zope.nipltd.com/public/lists.html

Documentation Generating Tools

DocFinder

http://www.handshake.de/~dieter/pyprojects/zope/DocFinder.html in conjunction with DocFinderTab:
http://www.zope.org/Members/shh/DocFinderTab

DocFinder can be of great help when discovering object APIs and debugging security problems. It furthermore treats
docstrings as structured text which is a very powerful feature as it allows to write nicely-formatted documentation right
into the source, while having it instantly available TTW.

HappyDoc

http://happydoc.sourceforge.net/ HappyDoc is a tool for extracting documentation from Python source code. It differs
from other such applications by the fact that it uses the parse tree for a module to derive the information used in its
output, rather that importing the module directly. This allows the user to generate documentation for modules which
need special context to be imported.

epydoc

http://epydoc.sourceforge.net/ Epydoc is a tool for generating API documentation for Python modules, based on their
docstrings. For an example of epydoc's output, see the API documentation for epydoc itself (html -
http://epydoc.sourceforge.net/api/ , pdf - http://epydoc.sourceforge.net/epydoc.pdf). A lightweight markup language

Programming Plone - The MySite Tutorial

78

called epytext can be used to format docstrings, and to add information about specific fields, such as parameters and
instance variables. Epydoc also understands docstrings written in ReStructuredText, Javadoc, and plaintext.

Examples illustrating the kind of documentation generated by epydoc are available online (as long as we can affort the
bandwidth) for

 • Archetypes at http://www.neuroinf.de/epydoc/at-api

 • Plone at http://www.neuroinf.de/epydoc/plone-api

Zpydoc

http://www.last-bastion.net/Zpydoc Zpydoc is an initiative to apply the standard documentation formalisms utilised
within Python to Zope - itself a Python application. Its basically a wrapper to make pydoc (but also much more)
available from within Zope directly.

Other Development-Supporting Tools

VerboseSecurity

http://hathawaymix.org/Software/VerboseSecurity VerboseSecurity is an add-on product for Zope that helps explain the
reason for denied security access.

It attempts to explain the complete reasoning for failed access. It shows what object was being accessed, what
permission is required to access it, what roles map to that permission in that context, the executable object and its
owner, the effective proxy roles, and other pertinent information. All of this information appears in the exception
message when access is denied.

TCPWatch

http://hathawaymix.org/Software/TCPWatch TCPWatch is a utility written in Python that lets you monitor forwarded
TCP connections or HTTP proxy connections. It displays the sessions in a window with a history of past connections. It
is useful for developing and debugging protocol implementations and web services.

BoaConstructor

http://boa-constructor.sourceforge.net/ is a cross platform Python IDE (integrated development environment) with Zope
support.

ZopeProfiler

http://www.dieter.handshake.de/pyprojects/zope/#bct_sec_2.4 ZopeProfiler provides profiling support for the
development of Zope applications. It can derive both high and low level timing statistics (Zope object call and Python
function call level, respectively).

Unlike with the standard Zope profiling support, Zope runs normally in multi-threaded mode. Statistics gathering can be
enabled/disabled dynamically via the ZopeProfiler object in the Control_Panel. This object supports most features of
Python's pstats.Stats timing analysis class and is much smarter than the standard Zope profiler. Should the features be
insufficient, then statistics data can be saved to files and later analysed with Python's Stats class.

Programming Plone - The MySite Tutorial

79

Installing Zope, Plone and Products

There are several ways to make a Plone installation. Some depend on the operating system you are using. For a
development set-up, I recommend to do an installation from the source files because this is usually the only way to
work right out of current subversion (or CVS) check outs. If you are unfamiliar with versioning systems as they are used
for software development, see here for an introduction to CVS which is used for the collective projects hosted at
SourceForge or for SubVersion which is used by Zope and Plone as well as an increasing amount of collective projects
now hosted on svn.plone.org/collective.

Source Installations in General

Source installations usually always work the same way: You download some source code - most often packed as a tar
archive (also called tar-ball) so that you can get an arbitrarily complex directory tree as one single file. The first thing to
do then is to unpack the tar-ball with "tar -xzvf <something.tgz> " into some directory of your choice. Alternatively, you
make a CVS or SubVersion check-out. Then look for instructions. Files called "README" or "INSTALL" are your best
bet. Most of the time, however, it boils down to the following three steps: configure; make; make install .
Calling configure checks your computer for available software that may be needed and most importantly, figures out
where is what in order to set variables needed for the following compilation correctly. Then make does the main work:
it compiles the source code that you've just downloaded so that it can be executed later on your machine. Finally,
make install puts the compiled files where they belong on your system or where you have defined them to go. This
last step usually requires root or administrator priviledges, so if you don't have them make sure to change the
configuration such that the compiled files go to a place where you have write permissions.

Zope and Plone

Zope

Download the current tar-ball from zope.org and unpack it into a directory of your choice. Change into the just created
Zope-2.x.y-something folder and call ./configure followed by make and make install . If you want an
installation that can easily be removed later, you can put everything in this folder by answering . (the current directory)
when asked where to put Zope. For a standard installation this is it. You can now start your Zope by calling
bin/zopectl start or bin/runzope and then point your browser to localhost:8080 to contact it.

Plone

Plone installs like any other Zope 2 extension by putting the unpacked or checked out source code into Zope's
Products folder. The only thing to note here is that Plone (like MySite) consists of several so-called Products each
of which needs to go into Zope's Products directory individually. Restart your Zope server (bin/zopectl
restart if you have a running Zope started with bin/zopectl start or by pressing Crl^c followed by
bin/runzope otherwise) and Plone Site (among other things) should be available now in your Zope's
management interface (ZMI) from the drop-down add list.

Products

Products for Zope

As just mentioned, most of the time installing products for Zope is as easy as putting its source code into the right
directory and restarting the Zope server. Some products, however, may deviate from this pattern, as they might need to

Programming Plone - The MySite Tutorial

80

go into a different location (like ZopeTestCase needs to go into Zope's lib/python/Testing folder) or require
some further action to be taken. For instance performance-critical applications like TextIndexNG require an extra
compilation to be performed as they are not entirely written in Python but also contain components written in C. Other
products may require additional software to be installed on your server which may or may not be available for your
platform.

Products for Plone

Making the features provided by a product available in your Plone site most often requires one additional step:
installing it via the quickinstaller. This is not done automatically on server start-up because you need to have a way to
control which products to make available in which site, given that you can have arbitrarily many Plone sites on one
Zope server. Accessing the quickinstaller TTW can either be done from within Plone via configuring Plone ->
add products or from the ZMI by selecting the portal_quickinstaller. Check the product(s) you want to
install and click the install button - that should be it.

But what if things go wrong? This is the subject of the next section.

Troubleshooting

There are various ways and levels at which product installation can fail: Zope itself might have problems. If you've put
the code in the wrong place it may not be found. There might be problems with access rights at file system level,
required additional software might be missing and so on. A more comprehensive checklist follows below.

But even if products install just fine at the level of Zope, Plone might have its problems when trying to install them using
the quickinstaller. The new product might even not be offered for installation at all. So here is what you should check:

4. Is Zope starting? Use bin/runzope or check the log file for error messages. You may be missing additional
software or may have forgotten to compile something for instance. Or the product's __init__.py may just be buggy
and cannot be run (in which case I would not have much confidence in the product at all).

5. Is the new product known to Zope? Look in ZMI whether it is listed in Control_Panel/Products . If not, check
whether you have really put the source files in the right place and whether the user Zope is running under has the
access rights necessary.

6. Does the quickinstaller offer the new product for installation? Not all products actually require this but if this should
be the case and you cannot see it, this usually hints at a problem with the product's install function in its
Extensions/Install.py module. Try to invoke it by hand, that is, go to your portal's root folder in ZMI and add an
external method. Give it any id and title you like but the module's value needs to be <product name>.Install
and the method name install . Saving this will result in an error should the install function contain invalid Python
code for instance. The traceback tells you exactly where it failed and why.

7. Does the install get through? See, whether the install log contains any errors and if so, work your way through from
there.

Zeo

Zeo is a tool provided by Zope to allow several clients accessing one ZODB simultaneously. This is useful for
high-traffic sites where you want to deploy several machines and therefore several Zope servers in parallel. It is also
useful for development set-ups where you want to be able to access the ZODB of a running Zope in a debug session
as outlined in the debugging chapter.

Programming Plone - The MySite Tutorial

81

Installing Zeo doesn't require any action to be taken as Zeo comes included with Zope. All you need to do is to call
bin/mkzeoinstance and then have your Zope clients configured to contact ZEO instead of creating their own ZODB.
How this is done in detail is best illustrated by way of an example.

My Development Setup

At the time of this writing (April 2005) I have a particular development set-up made to test my products (like MySite)
in Plone 2.0.5 and the forthcoming Plone 2.1. So I want two sites to run simultaneously using different product versions
for some products (here most notably: Plone and Archetypes) but not all (MySite should be the same in both sites). I
also want both sites to be accessible to live debugging sessions while being manipulated through a browser. In the end
I need two ZEO instances - one for each site - and four Zope clients - two for each site - where the Zeos and one Zope
client per site are continously running while the additional Zope clients can be used as needed for debugging or
running the unit tests.

Now wait you may say: 2 ZEO and 4 Zope servers, that adds up to 6 (in words six) servers you have to set up just to
be able to develop and test a product? Isn't that overkill? Isn't that a hell of a lot of work to do before you can get
started? Wouldn't you need a high-end computer for this to run on, as there are four servers supposed to be running
continously? The short answer is: Don't worry. It's really straight-forward and it only takes a few minutes to set this up.
You don't believe me? Well, here we go:

On the hard disk of my desktop, I have an extra partition (called extra2) for development purposes in order not to
interfere with other stuff while messing around but any folder where you have write access would do for the following.
On this partition, I have an in-place Zope installation, currently Zope 2.7.5, so /extra2/Zope-2.7.5 is my
ZOPEHOME , and /extra2/Zope-2.7.57/lib/python is SOFTWAREHOME . On this partition I also have a folder
called Sites and in there I now create subfolders called Plone205 , Plone210 and SharedProducts .
Plone205 will contain the Zeo instance and the Zope clients implementing a - you guessed it - Plone 2.0.5 site,
Plone210 is the same for Plone 2.1 and SharedProducts will contain those products that I'm going to test in both
setups.

Before starting the installation there is one thing left to consider: If we want to have six (HTTP) servers running on one
machine, we need to bind them to different ports. As some of the Zope servers should also be accessed using a
browser, we better have port numbers that we can associate with our sites, so I have chosen port 9205 for the ZEO
serving the Plone 2.0.5 site's ZODB, 9210 for the other site, 8205 and 8206 for the Plone 2.0.5 site clients (and 8221
and 8222 for their FTP servers), and 8210 and 8211 for the Plone 2.1.0 clients (FTP: 8231 and 8232). Now we are
finally ready to go:

/extra2/Zope-2.7.5-final/bin/mkzeoinstance.py /extra2/Sites/Plone205/zeo 9205
/extra2/Zope-2.7.5-final/bin/mkzeoinstance.py /extra2/Sites/Plone210/zeo 9210
/extra2/Zope-2.7.5-final/bin/mkzopeinstance.py -d /extra2/Sites/Plone205/client1 -u admin:secret
/extra2/Zope-2.7.5-final/bin/mkzopeinstance.py -d /extra2/Sites/Plone205/client2 -u admin:secret
/extra2/Zope-2.7.5-final/bin/mkzopeinstance.py -d /extra2/Sites/Plone210/client1 -u admin:secret
/extra2/Zope-2.7.5-final/bin/mkzopeinstance.py -d /extra2/Sites/Plone210/client2 -u admin:secret

(to be continued)

Programming Plone - The MySite Tutorial

82

Acknowledgement

Thanks to all the individual people and communities who contribute to Plone. Particular thanks for the big pieces go to

 • Guido van Rossum, the PythonLabs, and the Python community for Python

 • Jim Fulton, Zope Corporation, and the Zope community for ZODB and Zope

 • Tres Seavers, Yvo Schubbe, and the CMF community for CMF

 • Alan Runyan, Alex Limi, and the Plone community for Plone

 • Benjamin Saller, Sidnei da Silva, and the Archetypes community for Archetypes

Further special thanks for individual contributions go to

 • Shane Hathaway for DCWorkflow, VerboseSecurity, TCPWatch, Ape (to mention just a few)

 • Martijn Faassen for Formulator, Silva, and Five

 • Dieter Maurer for DocFinder, ZopeProfiler, and exceptionel community support

 • Andreas Jung for TextIndexNG, PloneCollectorNG, and continuous community support

 • Stefan Holek for DocFinderTab, ZopeTestCase

 • Christian (Tiran) Heimes for PlacelessTranslationService, CMFPhoto(Album), and ATContentTypes

 • Jean Jordaan for the chapter on i18n

 • Mike Fletcher and Jean Jordaan for extensive and constructive comments on this book

and from my personal hall of fame

 • Linus Torvalds and the Linux community for Linux

 • Tim Berners-Lee, CERN, and the W3C for the Web

Please add a comment if you would like to add more people here.

Programming Plone - The MySite Tutorial

83

About this Document

This document was written by Raphael Ritz (r.ritz@biologie.hu-berlin.de). It is covered under a Creative Commons
license and under the GNU Free Documentation License, with one invariant section: this section, About this
document , must remain unchanged. Otherwise, you can distribute it, make changes to it, etc. as long as you give
credit.

If you have any comments, corrections, or changes, please use the comment hooks provided. They are there for a
reason. Thanks!

BackTalk

The on-line version of this document is done using BackTalk (http://backtalk.sourceforge.net/) and the pdf generation
is done by the ReportLab Toolkit from http://www.reportlab.org.

	Objective
	Audience
	Topics Covered
	Dependencies
	Installation
	Building Blocks
	Python
	Zope
	CMF
	Plone
	Archetypes

	The Big Picture
	Object/Name/Method Look up (or how Zope finds out about things)
	Multiple Inheritance
	Acquisition
	Skinning

	Getting Ready for the MySite Product
	What are all these Different Files for?
	The Gory Details
	 config.py
	 __init__.py
	 Extensions/Install.py
	 MyTool.py
	 MembershipTool.py
	 Deadline.py
	 Event.py
	 CompoundWorkflow.py
	 my_utils.py
	 refresh.txt
	 tool.gif
	 version.txt
	 skins

	Customizing Archetypes
	Archetype's Approach
	Playground
	Basic Customizations
	BaseSchema (part 1)
	Macros
	Widgets
	Fields
	Views
	Validators

	Refactoring
	Splitting Products
	Schema Evolution
	Adding a field
	Deleting a field
	Renaming a field
	Changing the Type of a Field
	Customizing BaseSchema (part 2)

	Conclusions

	Internationalisation (i18n)
	Definitions
	Plone and Internationalisation
	Plone is Internationalised
	Using the I18N infrastructure
	gettext
	PlacelessTranslationService (PTS)
	Translating Page Templates
	Case One: Welcome to Plone
	Case Two: "Plone Icon"
	Case Three: "There have been over 100,000 downloads of Plone."
	Case Four: "Please visit About Plone for more information."

	Translating MySite
	Preparing the templates
	portlet_deadlines
	search_form
	Preparing the translation directory
	Translating code in Python files
	Updating the i18n directory
	Right:
	Are we done yet?
	Translating text in Python code
	Translating vocabularies
	This is one way to do it:

	Localising content
	Solutions and Examples

	Testing
	Why testing?
	Digression: Test-Driven Development (TDD)
	Quoting Kent Beck innerlink 1 : The "rhythm" of TDD can be summed up as follows:
	The surprises are likely to include:

	Testing what?
	Unit tests
	Integration tests
	Regression tests
	Functional tests

	How to do it in general
	 XUnit
	Implementations
	DocTesting

	Running Zope's unit tests
	Use Zope 2.7.3 or later
	Testing Zope

	ZopeTestCase
	Providing unit tests for your product
	Writing functional tests
	Writing doc tests
	References
	Some Python specific links:

	Debugging Plone
	Printing to the browser
	Printing to the console
	Logging
	Using zopectl debug
	Using Python's debugger (pdb) with emacs
	Using ZEO

	Conclusions
	Solution Proposals for the Exercises
	1] Fundamental Background - Object Orientation
	2] Python Background - Collection Types
	3] Fundamental Background - Name Space
	4] Zope Background - PropertyManager
	5] Python Background - Monkey Patching
	6] Zope Background - ZCatalog
	7] CMF Background - Content Generation
	8] Fundamental Background - Inheritance
	9] Plone Background - createMemberArea
	10] Archetypes Background - Basic Concepts
	11] CMF Background - Type Registration
	12] Archetypes Background - References
	13] CMF Background - Workflow
	14] Python Background - Signature
	15] Python Background - Submodules
	16] Optimization - Search Template
	17] List Comprehension

	Major Python/Zope/CMF/Plone/Archetypes resources
	Documentation
	Python
	Zope
	CMF
	Plone
	Archetypes

	More Specific Tools for Finding or Generating Documentation
	Full-text Searchable Mailing List Archives
	Documentation Generating Tools
	DocFinder
	HappyDoc
	epydoc
	Zpydoc

	Other Development-Supporting Tools
	VerboseSecurity
	TCPWatch
	BoaConstructor
	ZopeProfiler

	Installing Zope, Plone and Products
	Source Installations in General
	Zope and Plone
	Zope
	Plone

	Products
	Products for Zope
	Products for Plone
	Troubleshooting

	Zeo
	My Development Setup

	Acknowledgement
	About this Document
	BackTalk

